Advertisement

Neurophysiology

  • L. Leocani
  • G. Comi
Part of the Topics in Neuroscience book series (TOPNEURO)

Abstract

Neurophysiological methods, particularly evoked potentials (EPs), are widely employed in the functional assessment of multiple sclerosis (MS), since they provide a reliable, even though indirect, measure of the extent of demyelination or axonal loss in a given pathway. For this reason, they are used to define the involvement of sensory and motor pathways in the presence of vague disturbances, and to detect clinically silent lesions. The latter application of EPs has become greatly reduced since the development of magnetic resonance imaging (MRI) technology, which has a much higher sensitivity in detecting subclinical lesions. Nevertheless, the information provided by EPs is different from that provided by structural MRI techniques, since EPs are more strictly related to function. Disease severity assessed clinically well correlates with the extent of neurophysiological abnormalities [1,2]. Neurophysiological studies specifically aimed at characterizing the primary progressive (PP) form of MS, particularly with respect to secondary progressive MS (SPMS), are lacking. In this chapter, we discuss the rationale and applications of neurophysiological methods to the study of PPMS.

Keywords

Multiple Sclerosis Expand Disability Status Scale Expand Disability Status Scale Score Primary Progressive Multiple Sclerosis Central Motor Conduction Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nuwer MR, Packwood JW, Lawrence WM, Ellison GW (1987) Evoked potentials predict the clinical changes in a multiple sclerosis drug study. Neurology 37:1754–1761PubMedGoogle Scholar
  2. 2.
    Filippi M, Campi A, Mammi S et al (1995) Brain MRI and multimodal evoked potentials in benign and secondary multiple sclerosis. J Neurol Neurosurg Psychiatry 58: 31–37PubMedCrossRefGoogle Scholar
  3. 3.
    Lassmann H, Wisniewski HM (1979) Chronic relapsing experimental allergic encephalomyelitis: clinicopathological comparison with multiple sclerosis. Arch Neurol 36:490–497PubMedCrossRefGoogle Scholar
  4. 4.
    Trapp BD, Peterson J, Ransohoff RM et al (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285PubMedCrossRefGoogle Scholar
  5. 5.
    Scolding N, Franklin R (1998) Axon loss in multiple sclerosis. Lancet 352:340–341PubMedCrossRefGoogle Scholar
  6. 6.
    Ritchie JM, Rogart RB (1977) Density of sodium channels in mammalian myelinated nerve fibers and nature of the axonal membrane under the myelin sheath. Proc Natl Acad Sci USA 74:211–215PubMedCrossRefGoogle Scholar
  7. 7.
    McDonald WI (1963) The effects of experimental demyelination on conduction in peripheral nerve: a histological and electrophysiological study. II. Electrophysiological observations. Brain 86:501–524PubMedCrossRefGoogle Scholar
  8. 8.
    McDonald WI, Sears TA (1979) The effects of experimental demyelination on conduction in the central nervous system. Brain 93:583–598CrossRefGoogle Scholar
  9. 9.
    Rasminsky M, Sears TA (1972) Internodal conduction in undissected demyelinated fibres. J Physiol (Lond) 227:323–350Google Scholar
  10. 10.
    Moreau T, Coles A, Wing M et al (1996) Transient increase in symptoms associated with cytokine release in patients with multiple sclerosis. Brain 119:225–237PubMedCrossRefGoogle Scholar
  11. 11.
    Koller H, Siebler M, Hartung HP (1997) Immunologically induced electrophysiological dysfunction: implications for inflammatory diseases of the CNS and PNS. Prog Neurobiol 52:1–26PubMedCrossRefGoogle Scholar
  12. 12.
    McDonald WI (1977) Pathophysiology of conduction in central nerve fibers. In: Desmedt JE (ed) Visual evoked potentials in man: new developments. Clarendon Press, Oxford, pp 427–437Google Scholar
  13. 13.
    Emerson RG (1998) Evoked potentials in clinical trials for multiple sclerosis. J Clin Neurophysiol 15:109–116PubMedCrossRefGoogle Scholar
  14. 14.
    Comi G, Leocani L, Medaglini S et al (1999) Measuring evoked responses in multiple sclerosis. Mult Scler 5:263–267PubMedGoogle Scholar
  15. 15.
    Bjartmar C, Trapp BD (2001) Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol 14:271–278PubMedCrossRefGoogle Scholar
  16. 16.
    McGavern DB, Murray PD, Rivera-Quinones C et al (2000) Axonal loss results in spinal cord atrophy, electrophysiological abnormalities and neurological deficits following de-myelination in a chronic inflammatory model of multiple sclerosis. Brain 123:519–531PubMedCrossRefGoogle Scholar
  17. 17.
    Gronseth GS, Ashman EJ (2000) Practice parameter: the usefulness of evoked potentials in identifying clinically silent lesions in patients with suspected multiple sclerosis (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 54:1720–1725PubMedGoogle Scholar
  18. 18.
    Leocani L, Comi G (2000) Neurophysiologies investigations in multiple sclerosis. Curr Opin Neurol 13:255–261PubMedCrossRefGoogle Scholar
  19. 19.
    Facchetti D, Mai R, Micheli A et al (1997) Motor evoked potentials and disability in secondary progressive multiple sclerosis. Can J Neurol Sci 24:332–337PubMedGoogle Scholar
  20. 20.
    Kira J, Tobimatsu S, Goto I, Hasuo K (1993) Primary progressive versus relapsing remitting multiple sclerosis in Japanese patients: a combined clinical, magnetic resonance imaging and multimodality evoked potential study. J Neurol Sci 117:179–185PubMedCrossRefGoogle Scholar
  21. 21.
    Andersson T, Persson A (1990) Reproducibility of somatosensory evoked potentials (SEPs) after median nerve stimulation. Electroencephalogr Clin Neurophysiol 30:205–211Google Scholar
  22. 22.
    Martinelli V, Comi G (1995) Il valore prognostico dei potenziali evocati nella sclerosi multipla. In: Comi G (ed) I potenziali evocati nella sclerosi multipla — diagnosi, pro-gnosi e monitoraggio. Springer, Milan, pp 105–116Google Scholar
  23. 23.
    Ormerod IEC, Miller DH, McDonald WI et al (1987) The role of NMR imaging in the assessment of multiple sclerosis and isolated neurological lesions. A quantitative study. Brain 110:1579–1616PubMedCrossRefGoogle Scholar
  24. 24.
    Andersson PB, Waubant E, Gee L, Goodkin DE (1999) Multiple sclerosis that is progressive from the time of onset: clinical characteristics and progression of disability. Arch Neurol 56:1138–1142PubMedCrossRefGoogle Scholar
  25. 25.
    Kurtzke JF (1983) Rating neurological impairment in multiple sclerosis: an Expanded Disability Status Scale (EDSS). Neurology 33:1444–1452PubMedGoogle Scholar
  26. 26.
    Sater RA, Rostami AM, Galetta S et al (1999) Serial evoked potential studies and MRI imaging in chronic progressive multiple sclerosis. J Neurol Sci 171:79–83PubMedCrossRefGoogle Scholar
  27. 27.
    O’Connor P, Marchetti P, Lee L, Perera M (1998) Evoked potential abnormality scores are a useful measure of disease burden in relapsing-remitting multiple sclerosis. Ann Neurol 44:404–407PubMedCrossRefGoogle Scholar
  28. 28.
    Kidd D, Thompson PD, Day BL et al (1998) Central motor conduction time in progressive multiple sclerosis. Correlations with MRI and disease activity. Brain 121:1109–1116Google Scholar
  29. 29.
    Kalkers NF, Hintzen RQ, van Waesberghe JH et al (2001) Magnetization transfer histogram parameters reflect all dimensions of MS pathology, including atrophy. J Neurol Sci 184:155–162PubMedCrossRefGoogle Scholar
  30. 30.
    van Walderveen MA, Lycklama A, Nijeholt GJ et al (2001) Hypointense lesions on Tl-weighted spin-echo magnetic resonance imaging: relation to clinical characteristics in subgroups of patients with multiple sclerosis. Arch Neurol 58:76–81PubMedCrossRefGoogle Scholar
  31. 31.
    Rovaris M, Bozzali M, Santuccio G et al (2000) Relative contributions of brain and cervical cord pathology to multiple sclerosis disability: a study with magnetisation transfer ratio histogram analysis. J Neurol Neurosurg Psychiatry 69:723–727PubMedCrossRefGoogle Scholar
  32. 32.
    Comi G, Filippi M, Martinelli V et al (1995) Brain magnetic resonance imaging correlates of cognitive impairment in primary and secondary progressive multiple sclerosis. J Neurol Sci 132:222–227PubMedCrossRefGoogle Scholar
  33. 33.
    Rao SM, Leo GJ, Bernardin L, Unverzagt F (1991) Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns and predictions. Neurology 41:685–691Google Scholar
  34. 34.
    Peyser JM, Rao SM, Larocca NG, Kaplan E (1990) Guidelines for neuropsychological research in multiple sclerosis. Arch Neurol 47:94–97PubMedCrossRefGoogle Scholar
  35. 35.
    Filley CM, Heaton RK, Nelson LM et al (X989) A comparison of dementia in Alzheimer’s disease and multiple sclerosis. Arch Neurol 46:157–161Google Scholar
  36. 36.
    Comi G, Filippi M, Martinelli V et al (1993) Brain magnetic resonance imaging correlates of cognitive impairment in multiple sclerosis. J Neurol Sci 115:66–73CrossRefGoogle Scholar
  37. 37.
    Rao SM (1990) Multiple sclerosis. In: Cummings JL (ed) Subcortical dementia. Oxford University Press, New York, pp 164–180Google Scholar
  38. 38.
    Mahler ME, Benson DF (1990) Cognitive dysfunction in multiple sclerosis: a subcortical dementia? In: Rao SM (ed) Neurobehavioral aspects of multiple sclerosis. Oxford University Press, New York, pp 88–101Google Scholar
  39. 39.
    Damian MS, Schilling G, Bachmann G et al (1994) White matter lesions and cognitive deficits: relevance of lesion pattern? Acta Neurol Scand 90:430–436PubMedCrossRefGoogle Scholar
  40. 40.
    Miki Y, Grossman RI, Udupa JK et al (1998) Isolated U-fiber involvement in MS-pre-liminary observations. Neurology 50:1301–1306PubMedGoogle Scholar
  41. 41.
    Rao SM, Leo GJ, Haughton VM et al (1989) Correlation of magnetic resonance imaging with neuropsychological testing in multiple sclerosis. Neurology 39:161–166PubMedGoogle Scholar
  42. 42.
    Foong J, Rozewicz L, Chong WK et al (2000) A comparison of neuropsychological deficits in primary and secondary progressive multiple sclerosis. J Neurol 247:97–101PubMedCrossRefGoogle Scholar
  43. 43.
    Comi G, Leocani L, Locatelli T et al (1999) Electrophysiological investigations in multiple sclerosis dementia. Electroencephalogr Clin Neurophysiol Suppl 50:480–485PubMedGoogle Scholar
  44. 44.
    Harrer G, Harrer H, Kofler B, Haas R (1985) Multiple sclerosis and the electroencephalogram (computer EEG studies). Wien Med Wochenschr 135:38–40PubMedGoogle Scholar
  45. 45.
    Locatelli T, Filippi M, Martinelli V et al (1993) EEG mapping in multiple sclerosis. Riv Neurobiol 39:233–237Google Scholar
  46. 46.
    Leocani L, Magnani G, Locatelli T et al (1998) EEG correlates of cognitive impairment in MS. Ital J Neurol Sci 19:S413-S417CrossRefGoogle Scholar
  47. 47.
    Thatcher RW, Krause PJ, Hrybyk M (1986) Cortico-cortical associations and EEG coherence: a two-compartmental model. Electroencephalogr Clin Neurophysiol 64:123–143PubMedCrossRefGoogle Scholar
  48. 48.
    Franklin GM, Nelson LM, Filter CM, Heaton RK (1989) Cognitive loss in multiple sclerosis. Arch Neurol 46:162–167PubMedCrossRefGoogle Scholar
  49. 49.
    Comi G, Rovaris M, Falautano M et al (1999) A multiparametric MRI study of frontal lobe dementia in multiple sclerosis. J Neurol Sci 171:135–144PubMedCrossRefGoogle Scholar
  50. 50.
    Swirsky-Sacchetti T, Mitchell DR, Seward J et al (1992) Neuropsychological and structural brain lesions in multiple sclerosis: a regional analysis. Neurology 42:1291–1295PubMedGoogle Scholar
  51. 51.
    Foong J, Rozewicz L, Quaghebeur G et al (1997) Executive functions in multiple sclerosis. The role of frontal lobe pathology. Brain 120:15–26Google Scholar
  52. 52.
    Rovaris M, Filippi M, Falautano M et al (1998) Relationship between MR abnormalities and patterns of cognitive impairment in multiple sclerosis. Neurology 50:1601–1608PubMedGoogle Scholar
  53. 53.
    Heaton RK, Nelson LM, Thompson DS et al (1985) Neuropsychological findings in relapsing-remitting and chronic-progressive multiple sclerosis. J Consult Clin Psychol 53:103–110PubMedCrossRefGoogle Scholar
  54. 54.
    Beatty WW, Goodkin DE, Monson N, Beatty PA (1989) Cognitive disturbances in patients with relapsing remitting multiple sclerosis. Arch Neurol 46:1113–1119PubMedCrossRefGoogle Scholar
  55. 55.
    Desmedt JE (1980) P300 in serial tasks: an essential post-decision closure mechanism. Prog Brain Res 54:682–686PubMedCrossRefGoogle Scholar
  56. 56.
    Kutas M, McCarthy G, Donchin E (1977) Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. Science 197:792–795PubMedCrossRefGoogle Scholar
  57. 57.
    Rao SM, Leo GJ, St Hubin Faubert P (1989) On the nature of memory disturbance in multiple sclerosis. J Clin Exp Neuropsychol 11:699–712PubMedCrossRefGoogle Scholar
  58. 58.
    Newton MR, Barrett G, Callanan MM, Towell AD (1989) ERP P300 in multiple sclerosis. Brain 112:1636–1660CrossRefGoogle Scholar
  59. 59.
    Giesser BS, Schroeder MM, LaRocca NG et al (1992) Endogenous event-related potentials as indices of dementia in multiple sclerosis patients. Electroencephalogr Clin Neurophysiol 82:320–329PubMedCrossRefGoogle Scholar
  60. 60.
    Honig LS, Ramsay RE, Sheremata WA (1992) Event-related potentials P300 in multiple sclerosis. Relation to magnetic resonance imaging and cognitive impairment. Arch Neurol 49:44–50Google Scholar
  61. 61.
    Pelosi L, Geesken JM, Holly M et al (1997) Working memory impairment in early multiple sclerosis. Evidence from an event-related potential study of patients with clinically isolated myelopathy. Brain 120:2039–2058Google Scholar
  62. 62.
    Sternberg S (1966) High-speed scanning in human memory. Science 153:652–654PubMedCrossRefGoogle Scholar
  63. 63.
    Leocani L, Magnani G, Locatelli T et al (1998) EEG correlates of cognitive impairment in MS. Ital J Neurol Sci 19:S413-S417CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 2002

Authors and Affiliations

  • L. Leocani
  • G. Comi

There are no affiliations available

Personalised recommendations