Skip to main content

Neurophysiology

  • Chapter
  • 132 Accesses

Part of the book series: Topics in Neuroscience ((TOPNEURO))

Abstract

Neurophysiological methods, particularly evoked potentials (EPs), are widely employed in the functional assessment of multiple sclerosis (MS), since they provide a reliable, even though indirect, measure of the extent of demyelination or axonal loss in a given pathway. For this reason, they are used to define the involvement of sensory and motor pathways in the presence of vague disturbances, and to detect clinically silent lesions. The latter application of EPs has become greatly reduced since the development of magnetic resonance imaging (MRI) technology, which has a much higher sensitivity in detecting subclinical lesions. Nevertheless, the information provided by EPs is different from that provided by structural MRI techniques, since EPs are more strictly related to function. Disease severity assessed clinically well correlates with the extent of neurophysiological abnormalities [1,2]. Neurophysiological studies specifically aimed at characterizing the primary progressive (PP) form of MS, particularly with respect to secondary progressive MS (SPMS), are lacking. In this chapter, we discuss the rationale and applications of neurophysiological methods to the study of PPMS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nuwer MR, Packwood JW, Lawrence WM, Ellison GW (1987) Evoked potentials predict the clinical changes in a multiple sclerosis drug study. Neurology 37:1754–1761

    PubMed  CAS  Google Scholar 

  2. Filippi M, Campi A, Mammi S et al (1995) Brain MRI and multimodal evoked potentials in benign and secondary multiple sclerosis. J Neurol Neurosurg Psychiatry 58: 31–37

    Article  PubMed  CAS  Google Scholar 

  3. Lassmann H, Wisniewski HM (1979) Chronic relapsing experimental allergic encephalomyelitis: clinicopathological comparison with multiple sclerosis. Arch Neurol 36:490–497

    Article  PubMed  CAS  Google Scholar 

  4. Trapp BD, Peterson J, Ransohoff RM et al (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285

    Article  PubMed  CAS  Google Scholar 

  5. Scolding N, Franklin R (1998) Axon loss in multiple sclerosis. Lancet 352:340–341

    Article  PubMed  CAS  Google Scholar 

  6. Ritchie JM, Rogart RB (1977) Density of sodium channels in mammalian myelinated nerve fibers and nature of the axonal membrane under the myelin sheath. Proc Natl Acad Sci USA 74:211–215

    Article  PubMed  CAS  Google Scholar 

  7. McDonald WI (1963) The effects of experimental demyelination on conduction in peripheral nerve: a histological and electrophysiological study. II. Electrophysiological observations. Brain 86:501–524

    Article  PubMed  CAS  Google Scholar 

  8. McDonald WI, Sears TA (1979) The effects of experimental demyelination on conduction in the central nervous system. Brain 93:583–598

    Article  Google Scholar 

  9. Rasminsky M, Sears TA (1972) Internodal conduction in undissected demyelinated fibres. J Physiol (Lond) 227:323–350

    CAS  Google Scholar 

  10. Moreau T, Coles A, Wing M et al (1996) Transient increase in symptoms associated with cytokine release in patients with multiple sclerosis. Brain 119:225–237

    Article  PubMed  Google Scholar 

  11. Koller H, Siebler M, Hartung HP (1997) Immunologically induced electrophysiological dysfunction: implications for inflammatory diseases of the CNS and PNS. Prog Neurobiol 52:1–26

    Article  PubMed  CAS  Google Scholar 

  12. McDonald WI (1977) Pathophysiology of conduction in central nerve fibers. In: Desmedt JE (ed) Visual evoked potentials in man: new developments. Clarendon Press, Oxford, pp 427–437

    Google Scholar 

  13. Emerson RG (1998) Evoked potentials in clinical trials for multiple sclerosis. J Clin Neurophysiol 15:109–116

    Article  PubMed  CAS  Google Scholar 

  14. Comi G, Leocani L, Medaglini S et al (1999) Measuring evoked responses in multiple sclerosis. Mult Scler 5:263–267

    PubMed  CAS  Google Scholar 

  15. Bjartmar C, Trapp BD (2001) Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol 14:271–278

    Article  PubMed  CAS  Google Scholar 

  16. McGavern DB, Murray PD, Rivera-Quinones C et al (2000) Axonal loss results in spinal cord atrophy, electrophysiological abnormalities and neurological deficits following de-myelination in a chronic inflammatory model of multiple sclerosis. Brain 123:519–531

    Article  PubMed  Google Scholar 

  17. Gronseth GS, Ashman EJ (2000) Practice parameter: the usefulness of evoked potentials in identifying clinically silent lesions in patients with suspected multiple sclerosis (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 54:1720–1725

    PubMed  CAS  Google Scholar 

  18. Leocani L, Comi G (2000) Neurophysiologies investigations in multiple sclerosis. Curr Opin Neurol 13:255–261

    Article  PubMed  CAS  Google Scholar 

  19. Facchetti D, Mai R, Micheli A et al (1997) Motor evoked potentials and disability in secondary progressive multiple sclerosis. Can J Neurol Sci 24:332–337

    PubMed  CAS  Google Scholar 

  20. Kira J, Tobimatsu S, Goto I, Hasuo K (1993) Primary progressive versus relapsing remitting multiple sclerosis in Japanese patients: a combined clinical, magnetic resonance imaging and multimodality evoked potential study. J Neurol Sci 117:179–185

    Article  PubMed  CAS  Google Scholar 

  21. Andersson T, Persson A (1990) Reproducibility of somatosensory evoked potentials (SEPs) after median nerve stimulation. Electroencephalogr Clin Neurophysiol 30:205–211

    Google Scholar 

  22. Martinelli V, Comi G (1995) Il valore prognostico dei potenziali evocati nella sclerosi multipla. In: Comi G (ed) I potenziali evocati nella sclerosi multipla — diagnosi, pro-gnosi e monitoraggio. Springer, Milan, pp 105–116

    Google Scholar 

  23. Ormerod IEC, Miller DH, McDonald WI et al (1987) The role of NMR imaging in the assessment of multiple sclerosis and isolated neurological lesions. A quantitative study. Brain 110:1579–1616

    Article  PubMed  Google Scholar 

  24. Andersson PB, Waubant E, Gee L, Goodkin DE (1999) Multiple sclerosis that is progressive from the time of onset: clinical characteristics and progression of disability. Arch Neurol 56:1138–1142

    Article  PubMed  CAS  Google Scholar 

  25. Kurtzke JF (1983) Rating neurological impairment in multiple sclerosis: an Expanded Disability Status Scale (EDSS). Neurology 33:1444–1452

    PubMed  CAS  Google Scholar 

  26. Sater RA, Rostami AM, Galetta S et al (1999) Serial evoked potential studies and MRI imaging in chronic progressive multiple sclerosis. J Neurol Sci 171:79–83

    Article  PubMed  CAS  Google Scholar 

  27. O’Connor P, Marchetti P, Lee L, Perera M (1998) Evoked potential abnormality scores are a useful measure of disease burden in relapsing-remitting multiple sclerosis. Ann Neurol 44:404–407

    Article  PubMed  Google Scholar 

  28. Kidd D, Thompson PD, Day BL et al (1998) Central motor conduction time in progressive multiple sclerosis. Correlations with MRI and disease activity. Brain 121:1109–1116

    Google Scholar 

  29. Kalkers NF, Hintzen RQ, van Waesberghe JH et al (2001) Magnetization transfer histogram parameters reflect all dimensions of MS pathology, including atrophy. J Neurol Sci 184:155–162

    Article  PubMed  CAS  Google Scholar 

  30. van Walderveen MA, Lycklama A, Nijeholt GJ et al (2001) Hypointense lesions on Tl-weighted spin-echo magnetic resonance imaging: relation to clinical characteristics in subgroups of patients with multiple sclerosis. Arch Neurol 58:76–81

    Article  PubMed  Google Scholar 

  31. Rovaris M, Bozzali M, Santuccio G et al (2000) Relative contributions of brain and cervical cord pathology to multiple sclerosis disability: a study with magnetisation transfer ratio histogram analysis. J Neurol Neurosurg Psychiatry 69:723–727

    Article  PubMed  CAS  Google Scholar 

  32. Comi G, Filippi M, Martinelli V et al (1995) Brain magnetic resonance imaging correlates of cognitive impairment in primary and secondary progressive multiple sclerosis. J Neurol Sci 132:222–227

    Article  PubMed  CAS  Google Scholar 

  33. Rao SM, Leo GJ, Bernardin L, Unverzagt F (1991) Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns and predictions. Neurology 41:685–691

    Google Scholar 

  34. Peyser JM, Rao SM, Larocca NG, Kaplan E (1990) Guidelines for neuropsychological research in multiple sclerosis. Arch Neurol 47:94–97

    Article  PubMed  CAS  Google Scholar 

  35. Filley CM, Heaton RK, Nelson LM et al (X989) A comparison of dementia in Alzheimer’s disease and multiple sclerosis. Arch Neurol 46:157–161

    Google Scholar 

  36. Comi G, Filippi M, Martinelli V et al (1993) Brain magnetic resonance imaging correlates of cognitive impairment in multiple sclerosis. J Neurol Sci 115:66–73

    Article  Google Scholar 

  37. Rao SM (1990) Multiple sclerosis. In: Cummings JL (ed) Subcortical dementia. Oxford University Press, New York, pp 164–180

    Google Scholar 

  38. Mahler ME, Benson DF (1990) Cognitive dysfunction in multiple sclerosis: a subcortical dementia? In: Rao SM (ed) Neurobehavioral aspects of multiple sclerosis. Oxford University Press, New York, pp 88–101

    Google Scholar 

  39. Damian MS, Schilling G, Bachmann G et al (1994) White matter lesions and cognitive deficits: relevance of lesion pattern? Acta Neurol Scand 90:430–436

    Article  PubMed  CAS  Google Scholar 

  40. Miki Y, Grossman RI, Udupa JK et al (1998) Isolated U-fiber involvement in MS-pre-liminary observations. Neurology 50:1301–1306

    PubMed  CAS  Google Scholar 

  41. Rao SM, Leo GJ, Haughton VM et al (1989) Correlation of magnetic resonance imaging with neuropsychological testing in multiple sclerosis. Neurology 39:161–166

    PubMed  CAS  Google Scholar 

  42. Foong J, Rozewicz L, Chong WK et al (2000) A comparison of neuropsychological deficits in primary and secondary progressive multiple sclerosis. J Neurol 247:97–101

    Article  PubMed  CAS  Google Scholar 

  43. Comi G, Leocani L, Locatelli T et al (1999) Electrophysiological investigations in multiple sclerosis dementia. Electroencephalogr Clin Neurophysiol Suppl 50:480–485

    PubMed  CAS  Google Scholar 

  44. Harrer G, Harrer H, Kofler B, Haas R (1985) Multiple sclerosis and the electroencephalogram (computer EEG studies). Wien Med Wochenschr 135:38–40

    PubMed  CAS  Google Scholar 

  45. Locatelli T, Filippi M, Martinelli V et al (1993) EEG mapping in multiple sclerosis. Riv Neurobiol 39:233–237

    Google Scholar 

  46. Leocani L, Magnani G, Locatelli T et al (1998) EEG correlates of cognitive impairment in MS. Ital J Neurol Sci 19:S413-S417

    Article  Google Scholar 

  47. Thatcher RW, Krause PJ, Hrybyk M (1986) Cortico-cortical associations and EEG coherence: a two-compartmental model. Electroencephalogr Clin Neurophysiol 64:123–143

    Article  PubMed  CAS  Google Scholar 

  48. Franklin GM, Nelson LM, Filter CM, Heaton RK (1989) Cognitive loss in multiple sclerosis. Arch Neurol 46:162–167

    Article  PubMed  CAS  Google Scholar 

  49. Comi G, Rovaris M, Falautano M et al (1999) A multiparametric MRI study of frontal lobe dementia in multiple sclerosis. J Neurol Sci 171:135–144

    Article  PubMed  CAS  Google Scholar 

  50. Swirsky-Sacchetti T, Mitchell DR, Seward J et al (1992) Neuropsychological and structural brain lesions in multiple sclerosis: a regional analysis. Neurology 42:1291–1295

    PubMed  CAS  Google Scholar 

  51. Foong J, Rozewicz L, Quaghebeur G et al (1997) Executive functions in multiple sclerosis. The role of frontal lobe pathology. Brain 120:15–26

    Google Scholar 

  52. Rovaris M, Filippi M, Falautano M et al (1998) Relationship between MR abnormalities and patterns of cognitive impairment in multiple sclerosis. Neurology 50:1601–1608

    PubMed  CAS  Google Scholar 

  53. Heaton RK, Nelson LM, Thompson DS et al (1985) Neuropsychological findings in relapsing-remitting and chronic-progressive multiple sclerosis. J Consult Clin Psychol 53:103–110

    Article  PubMed  CAS  Google Scholar 

  54. Beatty WW, Goodkin DE, Monson N, Beatty PA (1989) Cognitive disturbances in patients with relapsing remitting multiple sclerosis. Arch Neurol 46:1113–1119

    Article  PubMed  CAS  Google Scholar 

  55. Desmedt JE (1980) P300 in serial tasks: an essential post-decision closure mechanism. Prog Brain Res 54:682–686

    Article  PubMed  CAS  Google Scholar 

  56. Kutas M, McCarthy G, Donchin E (1977) Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. Science 197:792–795

    Article  PubMed  CAS  Google Scholar 

  57. Rao SM, Leo GJ, St Hubin Faubert P (1989) On the nature of memory disturbance in multiple sclerosis. J Clin Exp Neuropsychol 11:699–712

    Article  PubMed  CAS  Google Scholar 

  58. Newton MR, Barrett G, Callanan MM, Towell AD (1989) ERP P300 in multiple sclerosis. Brain 112:1636–1660

    Article  Google Scholar 

  59. Giesser BS, Schroeder MM, LaRocca NG et al (1992) Endogenous event-related potentials as indices of dementia in multiple sclerosis patients. Electroencephalogr Clin Neurophysiol 82:320–329

    Article  PubMed  CAS  Google Scholar 

  60. Honig LS, Ramsay RE, Sheremata WA (1992) Event-related potentials P300 in multiple sclerosis. Relation to magnetic resonance imaging and cognitive impairment. Arch Neurol 49:44–50

    Google Scholar 

  61. Pelosi L, Geesken JM, Holly M et al (1997) Working memory impairment in early multiple sclerosis. Evidence from an event-related potential study of patients with clinically isolated myelopathy. Brain 120:2039–2058

    Google Scholar 

  62. Sternberg S (1966) High-speed scanning in human memory. Science 153:652–654

    Article  PubMed  CAS  Google Scholar 

  63. Leocani L, Magnani G, Locatelli T et al (1998) EEG correlates of cognitive impairment in MS. Ital J Neurol Sci 19:S413-S417

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Italia, Milano

About this chapter

Cite this chapter

Leocani, L., Comi, G. (2002). Neurophysiology. In: Filippi, M., Comi, G. (eds) Primary Progressive Multiple Sclerosis. Topics in Neuroscience. Springer, Milano. https://doi.org/10.1007/978-88-470-2234-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2234-8_5

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2236-2

  • Online ISBN: 978-88-470-2234-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics