Skip to main content

Functional Magnetic Resonance Imaging

  • Chapter
  • 130 Accesses

Part of the book series: Topics in Neuroscience ((TOPNEURO))

Abstract

In multiple sclerosis (MS), the clinical manifestations and the patterns of disease evolution are highly variable and correlate only weakly with findings on conventional magnetic resonance imaging (MRI) scans of the brain [1–3]. During the last few years, significant effort has been devoted to the definition of the factors contributing to this clinical/MRI discrepancy with the ultimate goal of achieving a better understanding of the mechanisms leading to irreversible disability in MS [4].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Filippi M, Paty DW, Kappos L et al (1995) Correlations between changes in disability and T2-weighted brain MRI activity in multiple sclerosis: a follow-up study. Neurology 45:255–260

    PubMed  CAS  Google Scholar 

  2. Lycklama à Nijeholt GJ, van Walderveen MA, Castelijns JA et al (1998) Brain and spinal cord abnormalities in multiple sclerosis. Correlation between MRI parameters, clinical subtypes and symptoms. Brain 121:687–697

    Google Scholar 

  3. Kappos L, Moeri D, Radue EW et al (1999) Predictive value of gadolinium-enhanced magnetic resonance imaging for relapse rate and changes in disability or impairment in multiple sclerosis: a meta-analysis. Gadolinium MRI Meta-analysis Group. Lancet 353:964–969

    Article  PubMed  CAS  Google Scholar 

  4. Filippi M (2001) In-vivo tissue characterization of multiple sclerosis and other white matter diseases using magnetic resonance based techniques. J Neurol 248 (in press)

    Google Scholar 

  5. De Stefano N, Matthews PM, Fu L et al (1998) Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 121:1469–1477

    Article  PubMed  Google Scholar 

  6. Fu L, Matthews PM, De Stefano N et al (1998) Imaging axonal damage of normal-appearing white matter in multiple sclerosis. Brain 121:103–113

    Article  PubMed  Google Scholar 

  7. Filippi M, Iannucci G, Tortorella C et al (1999) Comparison of MS clinical phenotypes using conventional and magnetization transfer MRI. Neurology 52:588–594

    PubMed  CAS  Google Scholar 

  8. Filippi M, Bozzali M, Horsfîeld MA et al (2000) A conventional and magnetization transfer MRI study of the cervical cord in patients with MS. Neurology 54:207–213

    PubMed  CAS  Google Scholar 

  9. Filippi M, Inglese M, Rovaris M et al (2000) Magnetization transfer imaging to monitor the evolution of MS: a 1-year follow-up study. Neurology 55:940–946

    PubMed  CAS  Google Scholar 

  10. Tortorella C, Viti B, Bozzali M et al (2000) A magnetization transfer histogram study of normal-appearing brain tissue in MS. Neurology 54:186–193

    PubMed  CAS  Google Scholar 

  11. Filippi M (2001) Linking structural, metabolic and functional changes in multiple sclerosis. Eur J Neurol 8:291–297

    Article  PubMed  CAS  Google Scholar 

  12. Mainero C, De Stefano N, Iannucci G et al (2001) Correlates of MS disability assessed in vivo using aggregates of MR quantities. Neurology 56:1331–1334

    PubMed  CAS  Google Scholar 

  13. Ogawa S, Menon RS, Tank DW et al (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64:803–812

    Article  PubMed  CAS  Google Scholar 

  14. Jueptner M, Weiller C (1995) Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. Neuroimage 2:148–156

    Article  PubMed  CAS  Google Scholar 

  15. Malonek D, Grinvald A (1996) Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272:551–554

    Article  PubMed  CAS  Google Scholar 

  16. Vanzetta I, Grinvald A (1999) Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging. Science 286:1555–1558

    Article  PubMed  CAS  Google Scholar 

  17. Ogawa S, Menon RS, Kim SG, Ugurbil K (1998) On the characteristics of functional magnetic resonance imaging of the brain. Annu Rev Biophys Biomol Struct 27:447–474

    Article  PubMed  CAS  Google Scholar 

  18. Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS (1993) Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med 30:161–173

    Article  PubMed  CAS  Google Scholar 

  19. Rombouts SA, Lazeron RH, Scheltens P et al (1998) Visual activation patterns in patients with optic neuritis: an fMRI pilot study. Neurology 50:1896–1899

    PubMed  CAS  Google Scholar 

  20. Werring DJ, Bullmore ET, Toosy AT et al (2000) Recovery from optic neuritis is associated with a change in the distribution of cerebral response to visual stimulation: a functional magnetic resonance imaging study. J Neurol Neurosurg Psychiatry 68:441–449

    Article  PubMed  CAS  Google Scholar 

  21. Clanet M, Berry I, Boulanouar K (1997) Functional imaging in multiple sclerosis. Int MS J 4:26–32

    Google Scholar 

  22. Lee M, Reddy H, Johansen-Berg H et al (2000) The motor cortex shows adaptive functional changes to brain injury from multiple sclerosis. Ann Neurol 47:606–613

    Article  PubMed  CAS  Google Scholar 

  23. Reddy H, Narayanan S, Arnoutelis R et al (2000) Evidence for adaptive functional changes in the cerebral cortex with axonal injury from multiple sclerosis. Brain 123:2314–2320

    Article  PubMed  Google Scholar 

  24. Reddy H, Narayanan S, Matthews PM et al (2000) Relating axonal injury to functional recovery in MS. Neurology 54:236–239

    PubMed  CAS  Google Scholar 

  25. Rocca MA, Falini A, Colombo B et al (2002) Adaptive functional changes in the cerebral cortex of patients with non-disabling MS correlate with the extent of brain structural damage. Ann Neurol (in press)

    Google Scholar 

  26. Mesulam MM (1998) From sensation to cognition. Brain 121:1013–1052

    Article  PubMed  Google Scholar 

  27. Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120:393–399

    Article  PubMed  Google Scholar 

  28. Trapp BD, Ransohoff R, Rudick R (1999) Axonal pathology in multiple sclerosis: relationship to neurologic disability. Curr Opin Neurol 12:295–302

    Article  PubMed  CAS  Google Scholar 

  29. Brex PA, O’Riordan JI, Miszkiel KA et al (1999) Multisequence MRI in clinically isolated syndromes and the early development of MS. Neurology 53:1184–1190

    PubMed  CAS  Google Scholar 

  30. Iannucci G, Tortorella C, Rovaris M et al (2000) Prognostic value of MR and magnetization transfer imaging findings in patients with clinically isolated syndromes suggestive of multiple sclerosis at presentation. AJNR Am J Neuroradiol 21:1034–1038

    PubMed  CAS  Google Scholar 

  31. De Stefano N, Narayanan S, Francis GS et al (2001) Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol 58:65–70

    Article  PubMed  Google Scholar 

  32. Cercignani M, Inglese M, Pagani E et al (2001) Mean diffusivity and fractional anisotropy histograms of patients with multiple sclerosis. AJNR Am J Neuroradiol 22:952–958

    PubMed  CAS  Google Scholar 

  33. Waxman SG, Ritchie JM (1993) Molecular dissection of the myelinated axon. Ann Neurol 33:121–136

    Article  PubMed  CAS  Google Scholar 

  34. Lassmann H, Bruck W, Lucchinetti C, Rodriguez M (1997) Remyelination in multiple sclerosis. Mult Scler 3:133–136

    Article  PubMed  CAS  Google Scholar 

  35. De Stefano N, Narayanan S, Matthews PM et al (1999) In vivo evidence for axonal dysfunction remote from focal cerebral demyelination of the type seen in multiple sclerosis. Brain 122:1933–1939

    Article  PubMed  Google Scholar 

  36. Simmons ML, Frondoza CG, Coyle JT (1991) Immunohistochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience 45:37–45

    Article  PubMed  CAS  Google Scholar 

  37. Weiller C, Chollet F, Friston KJ et al (1992) Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol 3:463–472

    Article  Google Scholar 

  38. Chollet F, Weiller C (1994) Imaging recovery of function following brain injury. Curr Opin Neurobiol 4:226–230

    Article  PubMed  CAS  Google Scholar 

  39. Cramer SC, Nelles G, Benson RR et al (1997) A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 28:2518–2527

    Article  PubMed  CAS  Google Scholar 

  40. Seil FJ (1997) Recovery and repair issues after stroke from the scientific perspective. Curr Opin Neurol 10:49–51

    Article  PubMed  CAS  Google Scholar 

  41. Cao Y, D’Olhaberriague L, Vikingstad EM et al (1998) Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis. Stroke 29:112–212

    Article  PubMed  CAS  Google Scholar 

  42. Thompson AJ, Montalban X, Barkhof F et al (2000) Diagnostic criteria for primary progressive multiple sclerosis: a position paper. Ann Neurol 47:831–835

    Article  PubMed  CAS  Google Scholar 

  43. Thompson AJ, Kermode AG, Wicks D et al (1991) Major differences in the dynamics of primary and secondary progressive multiple sclerosis. Ann Neurol 29:53–62

    Article  PubMed  CAS  Google Scholar 

  44. Kidd D, Thorpe JW, Kendall BE et al (1996) MRI dynamics of brain and spinal cord in progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 60:15–19

    Article  PubMed  CAS  Google Scholar 

  45. Stevenson VL, Miller DH, Rovaris M et al (1999) Primary and transitional progressive MS: a clinical and MRI cross-sectional study. Neurology 52:839–845

    PubMed  CAS  Google Scholar 

  46. Stevenson VL, Miller DH, Leary SM et al (2000) One year follow up study of primary and transitional progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 68:713–718

    Article  PubMed  CAS  Google Scholar 

  47. Leary SM, Davie CA, Parker GJ et al (1999) 1H magnetic resonance spectroscopy of normal appearing white matter in primary progressive multiple sclerosis. J Neurol 246:1023–1026

    Google Scholar 

  48. Leary SM, Silver NC, Stevenson VL et al (1999) Magnetisation transfer of normal appearing white matter in primary progressive multiple sclerosis. Mult Scler 5:313–316

    PubMed  CAS  Google Scholar 

  49. Rovaris M, Bozzali M, Santuccio G et al (2000) Relative contributions of brain and cervical cord pathology to multiple sclerosis disability: a study with magnetisation transfer ratio histogram analysis. J Neurol Neurosurg Psychiatry 69:723–727

    Article  PubMed  CAS  Google Scholar 

  50. Filippi M, Cercignani M, Inglese M et al (2001) Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology 56:304–311

    PubMed  CAS  Google Scholar 

  51. Bozzali M, Cercignani M, Comi G, Filippi M (2001) Gray matter involvement in multiple sclerosis phenotypes: a diffusion tensor and magnetization transfer imaging study (abstract). Proc Intl Soc Mag Reson Med 9:95

    Google Scholar 

  52. Rao SM, Binder JR, Bandettini PA et al (1993) Functional magnetic resonance imaging of complex human movements. Neurology 43:2311–2318

    PubMed  CAS  Google Scholar 

  53. Paus T, Petrides M, Evans AC, Meyer E (1993) Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: a positron emission tomography study. J Neurophysiol 70:453–469

    PubMed  CAS  Google Scholar 

  54. Jenkins IH, Brooks DJ, Nixon PD et al (1994) Motor sequence learning: a study with positron emission tomography. J Neurosci 14:3775–3790

    PubMed  CAS  Google Scholar 

  55. de Gelder B (2000) Neuroscience. More to seeing than meets the eye. Science 289:1148–1149

    Article  PubMed  Google Scholar 

  56. van Waesberghe JH, Kamphorst W, De Groot CJ et al (1999) Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann Neurol 46:747–754

    Article  PubMed  Google Scholar 

  57. Pierpaoli C, Jezzard P, Basser PJ et al (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Italia, Milano

About this chapter

Cite this chapter

Filippi, M., Rocca, M.A. (2002). Functional Magnetic Resonance Imaging. In: Filippi, M., Comi, G. (eds) Primary Progressive Multiple Sclerosis. Topics in Neuroscience. Springer, Milano. https://doi.org/10.1007/978-88-470-2234-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2234-8_11

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2236-2

  • Online ISBN: 978-88-470-2234-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics