Advertisement

Functional Magnetic Resonance Imaging

  • M. Filippi
  • M. A. Rocca
Part of the Topics in Neuroscience book series (TOPNEURO)

Abstract

In multiple sclerosis (MS), the clinical manifestations and the patterns of disease evolution are highly variable and correlate only weakly with findings on conventional magnetic resonance imaging (MRI) scans of the brain [1–3]. During the last few years, significant effort has been devoted to the definition of the factors contributing to this clinical/MRI discrepancy with the ultimate goal of achieving a better understanding of the mechanisms leading to irreversible disability in MS [4].

Keywords

Multiple Sclerosis Multiple Sclerosis Patient Optic Neuritis Supplementary Motor Area Magnetization Transfer Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Filippi M, Paty DW, Kappos L et al (1995) Correlations between changes in disability and T2-weighted brain MRI activity in multiple sclerosis: a follow-up study. Neurology 45:255–260PubMedGoogle Scholar
  2. 2.
    Lycklama à Nijeholt GJ, van Walderveen MA, Castelijns JA et al (1998) Brain and spinal cord abnormalities in multiple sclerosis. Correlation between MRI parameters, clinical subtypes and symptoms. Brain 121:687–697Google Scholar
  3. 3.
    Kappos L, Moeri D, Radue EW et al (1999) Predictive value of gadolinium-enhanced magnetic resonance imaging for relapse rate and changes in disability or impairment in multiple sclerosis: a meta-analysis. Gadolinium MRI Meta-analysis Group. Lancet 353:964–969PubMedCrossRefGoogle Scholar
  4. 4.
    Filippi M (2001) In-vivo tissue characterization of multiple sclerosis and other white matter diseases using magnetic resonance based techniques. J Neurol 248 (in press) Google Scholar
  5. 5.
    De Stefano N, Matthews PM, Fu L et al (1998) Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 121:1469–1477PubMedCrossRefGoogle Scholar
  6. 6.
    Fu L, Matthews PM, De Stefano N et al (1998) Imaging axonal damage of normal-appearing white matter in multiple sclerosis. Brain 121:103–113PubMedCrossRefGoogle Scholar
  7. 7.
    Filippi M, Iannucci G, Tortorella C et al (1999) Comparison of MS clinical phenotypes using conventional and magnetization transfer MRI. Neurology 52:588–594PubMedGoogle Scholar
  8. 8.
    Filippi M, Bozzali M, Horsfîeld MA et al (2000) A conventional and magnetization transfer MRI study of the cervical cord in patients with MS. Neurology 54:207–213PubMedGoogle Scholar
  9. 9.
    Filippi M, Inglese M, Rovaris M et al (2000) Magnetization transfer imaging to monitor the evolution of MS: a 1-year follow-up study. Neurology 55:940–946PubMedGoogle Scholar
  10. 10.
    Tortorella C, Viti B, Bozzali M et al (2000) A magnetization transfer histogram study of normal-appearing brain tissue in MS. Neurology 54:186–193PubMedGoogle Scholar
  11. 11.
    Filippi M (2001) Linking structural, metabolic and functional changes in multiple sclerosis. Eur J Neurol 8:291–297PubMedCrossRefGoogle Scholar
  12. 12.
    Mainero C, De Stefano N, Iannucci G et al (2001) Correlates of MS disability assessed in vivo using aggregates of MR quantities. Neurology 56:1331–1334PubMedGoogle Scholar
  13. 13.
    Ogawa S, Menon RS, Tank DW et al (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64:803–812PubMedCrossRefGoogle Scholar
  14. 14.
    Jueptner M, Weiller C (1995) Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. Neuroimage 2:148–156PubMedCrossRefGoogle Scholar
  15. 15.
    Malonek D, Grinvald A (1996) Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272:551–554PubMedCrossRefGoogle Scholar
  16. 16.
    Vanzetta I, Grinvald A (1999) Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging. Science 286:1555–1558PubMedCrossRefGoogle Scholar
  17. 17.
    Ogawa S, Menon RS, Kim SG, Ugurbil K (1998) On the characteristics of functional magnetic resonance imaging of the brain. Annu Rev Biophys Biomol Struct 27:447–474PubMedCrossRefGoogle Scholar
  18. 18.
    Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS (1993) Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med 30:161–173PubMedCrossRefGoogle Scholar
  19. 19.
    Rombouts SA, Lazeron RH, Scheltens P et al (1998) Visual activation patterns in patients with optic neuritis: an fMRI pilot study. Neurology 50:1896–1899PubMedGoogle Scholar
  20. 20.
    Werring DJ, Bullmore ET, Toosy AT et al (2000) Recovery from optic neuritis is associated with a change in the distribution of cerebral response to visual stimulation: a functional magnetic resonance imaging study. J Neurol Neurosurg Psychiatry 68:441–449PubMedCrossRefGoogle Scholar
  21. 21.
    Clanet M, Berry I, Boulanouar K (1997) Functional imaging in multiple sclerosis. Int MS J 4:26–32Google Scholar
  22. 22.
    Lee M, Reddy H, Johansen-Berg H et al (2000) The motor cortex shows adaptive functional changes to brain injury from multiple sclerosis. Ann Neurol 47:606–613PubMedCrossRefGoogle Scholar
  23. 23.
    Reddy H, Narayanan S, Arnoutelis R et al (2000) Evidence for adaptive functional changes in the cerebral cortex with axonal injury from multiple sclerosis. Brain 123:2314–2320PubMedCrossRefGoogle Scholar
  24. 24.
    Reddy H, Narayanan S, Matthews PM et al (2000) Relating axonal injury to functional recovery in MS. Neurology 54:236–239PubMedGoogle Scholar
  25. 25.
    Rocca MA, Falini A, Colombo B et al (2002) Adaptive functional changes in the cerebral cortex of patients with non-disabling MS correlate with the extent of brain structural damage. Ann Neurol (in press) Google Scholar
  26. 26.
    Mesulam MM (1998) From sensation to cognition. Brain 121:1013–1052PubMedCrossRefGoogle Scholar
  27. 27.
    Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120:393–399PubMedCrossRefGoogle Scholar
  28. 28.
    Trapp BD, Ransohoff R, Rudick R (1999) Axonal pathology in multiple sclerosis: relationship to neurologic disability. Curr Opin Neurol 12:295–302PubMedCrossRefGoogle Scholar
  29. 29.
    Brex PA, O’Riordan JI, Miszkiel KA et al (1999) Multisequence MRI in clinically isolated syndromes and the early development of MS. Neurology 53:1184–1190PubMedGoogle Scholar
  30. 30.
    Iannucci G, Tortorella C, Rovaris M et al (2000) Prognostic value of MR and magnetization transfer imaging findings in patients with clinically isolated syndromes suggestive of multiple sclerosis at presentation. AJNR Am J Neuroradiol 21:1034–1038PubMedGoogle Scholar
  31. 31.
    De Stefano N, Narayanan S, Francis GS et al (2001) Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol 58:65–70PubMedCrossRefGoogle Scholar
  32. 32.
    Cercignani M, Inglese M, Pagani E et al (2001) Mean diffusivity and fractional anisotropy histograms of patients with multiple sclerosis. AJNR Am J Neuroradiol 22:952–958PubMedGoogle Scholar
  33. 33.
    Waxman SG, Ritchie JM (1993) Molecular dissection of the myelinated axon. Ann Neurol 33:121–136PubMedCrossRefGoogle Scholar
  34. 34.
    Lassmann H, Bruck W, Lucchinetti C, Rodriguez M (1997) Remyelination in multiple sclerosis. Mult Scler 3:133–136PubMedCrossRefGoogle Scholar
  35. 35.
    De Stefano N, Narayanan S, Matthews PM et al (1999) In vivo evidence for axonal dysfunction remote from focal cerebral demyelination of the type seen in multiple sclerosis. Brain 122:1933–1939PubMedCrossRefGoogle Scholar
  36. 36.
    Simmons ML, Frondoza CG, Coyle JT (1991) Immunohistochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience 45:37–45PubMedCrossRefGoogle Scholar
  37. 37.
    Weiller C, Chollet F, Friston KJ et al (1992) Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol 3:463–472CrossRefGoogle Scholar
  38. 38.
    Chollet F, Weiller C (1994) Imaging recovery of function following brain injury. Curr Opin Neurobiol 4:226–230PubMedCrossRefGoogle Scholar
  39. 39.
    Cramer SC, Nelles G, Benson RR et al (1997) A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 28:2518–2527PubMedCrossRefGoogle Scholar
  40. 40.
    Seil FJ (1997) Recovery and repair issues after stroke from the scientific perspective. Curr Opin Neurol 10:49–51PubMedCrossRefGoogle Scholar
  41. 41.
    Cao Y, D’Olhaberriague L, Vikingstad EM et al (1998) Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis. Stroke 29:112–212PubMedCrossRefGoogle Scholar
  42. 42.
    Thompson AJ, Montalban X, Barkhof F et al (2000) Diagnostic criteria for primary progressive multiple sclerosis: a position paper. Ann Neurol 47:831–835PubMedCrossRefGoogle Scholar
  43. 43.
    Thompson AJ, Kermode AG, Wicks D et al (1991) Major differences in the dynamics of primary and secondary progressive multiple sclerosis. Ann Neurol 29:53–62PubMedCrossRefGoogle Scholar
  44. 44.
    Kidd D, Thorpe JW, Kendall BE et al (1996) MRI dynamics of brain and spinal cord in progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 60:15–19PubMedCrossRefGoogle Scholar
  45. 45.
    Stevenson VL, Miller DH, Rovaris M et al (1999) Primary and transitional progressive MS: a clinical and MRI cross-sectional study. Neurology 52:839–845PubMedGoogle Scholar
  46. 46.
    Stevenson VL, Miller DH, Leary SM et al (2000) One year follow up study of primary and transitional progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 68:713–718PubMedCrossRefGoogle Scholar
  47. 47.
    Leary SM, Davie CA, Parker GJ et al (1999) 1H magnetic resonance spectroscopy of normal appearing white matter in primary progressive multiple sclerosis. J Neurol 246:1023–1026Google Scholar
  48. 48.
    Leary SM, Silver NC, Stevenson VL et al (1999) Magnetisation transfer of normal appearing white matter in primary progressive multiple sclerosis. Mult Scler 5:313–316PubMedGoogle Scholar
  49. 49.
    Rovaris M, Bozzali M, Santuccio G et al (2000) Relative contributions of brain and cervical cord pathology to multiple sclerosis disability: a study with magnetisation transfer ratio histogram analysis. J Neurol Neurosurg Psychiatry 69:723–727PubMedCrossRefGoogle Scholar
  50. 50.
    Filippi M, Cercignani M, Inglese M et al (2001) Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology 56:304–311PubMedGoogle Scholar
  51. 51.
    Bozzali M, Cercignani M, Comi G, Filippi M (2001) Gray matter involvement in multiple sclerosis phenotypes: a diffusion tensor and magnetization transfer imaging study (abstract). Proc Intl Soc Mag Reson Med 9:95Google Scholar
  52. 52.
    Rao SM, Binder JR, Bandettini PA et al (1993) Functional magnetic resonance imaging of complex human movements. Neurology 43:2311–2318PubMedGoogle Scholar
  53. 53.
    Paus T, Petrides M, Evans AC, Meyer E (1993) Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: a positron emission tomography study. J Neurophysiol 70:453–469PubMedGoogle Scholar
  54. 54.
    Jenkins IH, Brooks DJ, Nixon PD et al (1994) Motor sequence learning: a study with positron emission tomography. J Neurosci 14:3775–3790PubMedGoogle Scholar
  55. 55.
    de Gelder B (2000) Neuroscience. More to seeing than meets the eye. Science 289:1148–1149PubMedCrossRefGoogle Scholar
  56. 56.
    van Waesberghe JH, Kamphorst W, De Groot CJ et al (1999) Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann Neurol 46:747–754PubMedCrossRefGoogle Scholar
  57. 57.
    Pierpaoli C, Jezzard P, Basser PJ et al (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 2002

Authors and Affiliations

  • M. Filippi
  • M. A. Rocca

There are no affiliations available

Personalised recommendations