Skip to main content

Proton Magnetic Resonance Spectroscopy

  • Chapter
Primary Progressive Multiple Sclerosis

Part of the book series: Topics in Neuroscience ((TOPNEURO))

Abstract

Approximately 85%-90% of patients with multiple sclerosis (MS) will begin their disease with a course of relapses and remissions and are therefore classified as having relapsing-remitting (RR) MS [1]. Some of these patients will eventually go on to develop a progressive disability that is characterized by a slow, irreversible deterioration over time, at which point they will be classified as having secondary progressive (SP) MS [1]. Interestingly, about 10%-15% of patients experience a progressive course, without any relapses or remissions, from the onset of their disease, and they are classified as having primary progressive (PP) MS [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 46:907–911

    Google Scholar 

  2. Thompson AJ, Montalban X, Barkhof F et al (2000) Diagnostic criteria for primary progressive multiple sclerosis: a position paper. Ann Neurol 47:831–835

    Article  PubMed  CAS  Google Scholar 

  3. Li DK, Zhao G, Paty DW (2000) T2 hyperintensities: findings and significance. Neuroimaging Clin N Am 10:717–738

    PubMed  CAS  Google Scholar 

  4. Allen IV, McKeown SR (1979) A histological» histochemical and biochemical study of the macroscopically normal white matter in multiple sclerosis. J Neurol Sci 41:81–91

    Article  PubMed  CAS  Google Scholar 

  5. Allen IV, Glover G, Anderson R (1981) Abnormalities in the macroscopically normal white matter in cases of mild or spinal multiple sclerosis (MS). Acta Neuropathol Suppl (Berl) 7:176–178

    Google Scholar 

  6. Trapp BD, Peterson J, Ransohoff RM et al (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285

    Article  PubMed  CAS  Google Scholar 

  7. Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452

    PubMed  CAS  Google Scholar 

  8. Thompson AJ, Kermode AG, MacManus DG et al (1990) Patterns of disease activity in multiple sclerosis: clinical and magnetic resonance imaging study. Br Med J 300:631–634

    Article  CAS  Google Scholar 

  9. Stevenson VL, Miller DH, Rovaris M et al (1999) Primary and transitional progressive MS: a clinical and MRI cross-sectional study. Neurology 52:839–845

    PubMed  CAS  Google Scholar 

  10. Thompson AJ, Kermode AG, MacManus DG et al (1989) Pathogenesis of progressive multiple sclerosis. Lancet 1:1322–1323

    Article  PubMed  CAS  Google Scholar 

  11. Thompson AJ, Kermode AG, Wicks D et al (1991) Major differences in the dynamics of primary and secondary progressive multiple sclerosis. Ann Neurol 29:53–62

    Article  PubMed  CAS  Google Scholar 

  12. Lycklama à Nijeholt GJ, van Walderveen MA, Castelijns JA et al (1998) Brain and spinal cord abnormalities in multiple sclerosis. Correlation between MRI parameters, clinical subtypes and symptoms. Brain 121:687–697

    Google Scholar 

  13. Leary SM, Davie CA, Parker GJ et al (1999) 1H magnetic resonance spectroscopy of normal appearing white matter in primary progressive multiple sclerosis. J Neurol 246:1023–1026

    Google Scholar 

  14. Thompson AJ, Polman CH, Miller DH et al (1997) Primary progressive multiple sclerosis. Brain 120:1085–1096

    Article  PubMed  Google Scholar 

  15. Arnold DL, De Stefano N, Narayanan S, Matthews PM (2000) Proton MR spectroscopy in multiple sclerosis. Neuroimaging Clin N Am 10:789–798

    PubMed  CAS  Google Scholar 

  16. Ross B, Bluml S (2001) Magnetic resonance spectroscopy of the human brain. Anat Rec (New Anat) 265:54–84

    Article  CAS  Google Scholar 

  17. De Stefano N, Narayanan S, Francis GS et al (2001) Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol 58:65–70

    Article  PubMed  Google Scholar 

  18. Narayanan S, De Stefano N, Francis GS et al (2001) Axonal metabolic recovery in multiple sclerosis patients treated with interferon ß-1b. J Neurol 248:979–986

    Article  PubMed  CAS  Google Scholar 

  19. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679

    Article  PubMed  CAS  Google Scholar 

  20. Christiansen P, Henriksen O, Stubgaard M et al (1993) In vivo quantification of brain metabolites by 1H-MRS using water as an internal standard. Magn Reson Imaging 11:107–118

    Article  PubMed  CAS  Google Scholar 

  21. Pan JW, Twieg DB, Hetherington HP (1998) Quantitative spectroscopic imaging of the human brain. Magn Reson Med 40:363–369

    Article  PubMed  CAS  Google Scholar 

  22. Urenjak J, Williams SR, Gadian DG, Noble M (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 13:981–989

    PubMed  CAS  Google Scholar 

  23. Chang L, Ernst T, Osborn D et al (1998) Proton spectroscopy in myotonic dystrophy: correlations with CTG repeats. Arch Neurol 55:305–311

    Article  PubMed  CAS  Google Scholar 

  24. De Stefano N, Matthews PM, Antel JP et al (1995) Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol 38:901–909

    Article  PubMed  Google Scholar 

  25. Helms G, Stawiarz L, Kivisakk P, Link H (2000) Regression analysis of metabolite concentrations estimated from localized proton MR spectra of active and chronic multiple sclerosis lesions. Magn Reson Med 43:102–110

    Article  PubMed  CAS  Google Scholar 

  26. Sarchielli P, Presciutti O, Pelliccioli GP et al (1999) Absolute quantification of brain metabolites by proton magnetic resonance spectroscopy in normal-appearing white matter of multiple sclerosis patients. Brain 122:513–521

    Article  PubMed  Google Scholar 

  27. Simmons ML, Frondoza CG, Coyle JT (1991) Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience 45:37–45

    Article  PubMed  CAS  Google Scholar 

  28. Arnold DL, Matthews PM, Francis G, Antel J (1990) Proton magnetic resonance spectroscopy of human brain in vivo in the evaluation of multiple sclerosis: assessment of the load of disease. Magn Reson Med 14:154–159

    Article  PubMed  CAS  Google Scholar 

  29. Bitsch A, Bruhn H, Vougioukas V et al (1999) Inflammatory CNS demyelination: histopathologic correlation with in vivo quantitative proton MR spectroscopy. AJNR Am J Neuroradiol 20:1619–1627

    PubMed  CAS  Google Scholar 

  30. Arnold DL, Matthews PM, Francis GS et al (1992) Proton magnetic resonance spectroscopic imaging for metabolic characterization of demyelinating plaques. Ann Neurol 31:235–241

    Article  PubMed  CAS  Google Scholar 

  31. Nicoli F, Vion-Dury J, Confort-Gouny S et al (1996) Cerebrospinal fluid metabolic profiles in multiple sclerosis and degenerative dementias obtained by high resolution proton magnetic resonance spectroscopy. C R Acad Sci III 319:623–631

    Google Scholar 

  32. Davie CA, Barker GJ, Thompson AJ et al (1997) 1H magnetic resonance spectroscopy of chronic cerebral white matter lesions and normal appearing white matter in multiple sclerosis. J Neurol Neurosurg Psychiatry 63:736–742

    Article  PubMed  CAS  Google Scholar 

  33. Pan JW, Whitaker JN (1998) Quantitation of 1H metabolites in subtypes of multiple sclerosis by spectroscopic imaging at 4.1 T [abstract]. Proc Int Soc Magn Reson Med 1:428

    Google Scholar 

  34. Pike GB, de Stefano N, Narayanan S et al (1999) Combined magnetization transfer and proton spectroscopic imaging in the assessment of pathologic brain lesions in multiple sclerosis. AJNR Am J Neuroradiol 20:829–837

    PubMed  CAS  Google Scholar 

  35. Cucurella MG, Rovira A, Rio J et al (2000) Proton magnetic resonance spectroscopy in primary and secondary progressive multiple sclerosis. NMR Biomed 13:57–63

    Article  PubMed  CAS  Google Scholar 

  36. Pan JW, Krupp LB, Elkins L, Coyle PK (2000) Cognitive dysfunction lateralizes with NAA in multiple sclerosis [abstract]. Proc Intl Soc Magn Reson Med 1:296

    Google Scholar 

  37. Suhy J, Rooney WD, Goodkin DE et al (2000) 1H MRSI comparison of white matter and lesions in primary progressive and relapsing-remitting MS. Mult Scler 6:148–155

    PubMed  CAS  Google Scholar 

  38. Oh J, Pelletier D, Nelson SJ (2001) Proton magnetic resonance spectroscopy in assessing axonal loss in the corpus callosum related with volume of regional T1 lesion load in multiple sclerosis [abstract]. Proc Int Soc Mag Reson Med 2:471

    Google Scholar 

  39. Pelletier D, Grenier D, Lu Y et al (2001) Regional comparison of axonal damage in multiple sclerosis using whole supratentorial brain 3D spectroscopy imaging [abstract], Proc Int Soc Magn Reson Med 2:985

    Google Scholar 

  40. Pelletier D, Grenier D, Antel JP et al (2001) MRI lesion volume heterogeneity in primary progressive multiple sclerosis: an assessment of axonal damage and brain atrophy measurement [abstract]. Neurology 56:A380

    Google Scholar 

  41. Viala K, Stievenart JL, Cabanis EA et al (2001) Study with localized proton magnetic resonance spectroscopy of 31 multiple sclerosis lesions: correlations with clinical and MRI features (in French). Rev Neurol (Paris) 157:35–44

    CAS  Google Scholar 

  42. Gonen O, Catalaa I, Babb JS et al (2000) Total brain N-acetylaspartate: a new measure of disease load in MS. Neurology 54:15–19

    PubMed  CAS  Google Scholar 

  43. Posse S, DeCarli C, Le Bihan D (1994) Three-dimensional echo-planar MR spectroscopic imaging at short echo times in the human brain. Radiology 192:733–738

    PubMed  CAS  Google Scholar 

  44. Van den Boogaart A, Vanhamme L (1997) MRUI Manual v. 96.3. A User’s Guide to the Magnetic Resonance User Interface software package. Delft Technische Universiteit Press, Delft

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Italia, Milano

About this chapter

Cite this chapter

Caramanos, Z., Santos, A.C., Francis, S.J., Narayanan, S., Pelletier, D., Arnold, D.L. (2002). Proton Magnetic Resonance Spectroscopy. In: Filippi, M., Comi, G. (eds) Primary Progressive Multiple Sclerosis. Topics in Neuroscience. Springer, Milano. https://doi.org/10.1007/978-88-470-2234-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2234-8_10

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2236-2

  • Online ISBN: 978-88-470-2234-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics