Advertisement

Induced Anisotropy, Particle Spin, and Effective Moduli in Granular Materials

  • James T. Jenkins
  • Luigi La Ragione

Abstract

We consider the incremental response of a deformed aggregate of spherical particles that interact through elastic, frictional contacts. We show that when the principal axes of the incremental strain do not coincide with the principal axes of the existing strain, the average rotation of the particles is not the same as the average rotation of the aggregate. We incorporate this difference when calculating the effective moduli of the deformed aggregate.

Keywords

Granular Material Contact Stiffness Frictional Contact Incremental Stress Particle Spin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Thornton, C., Randall, C.W. (1988): Application of theoretical contact mechanics to solid particle system simulation. In: Satake, M., Jenkins, J.T. (eds.) Micromechanics of granular materials. Elsevier, Amsterdam, pp. 133–142Google Scholar
  2. [2]
    Jenkins, J.T., Strack, O.D.L. (1993): Mean-field inelastic behavior of random arrays of identical spheres. Mech. Materials 16, 25–33CrossRefGoogle Scholar
  3. [3]
    Koenders, M.A. (1990): Localized deformation using higher-order stress-strain theory. J. Energy Resources Tech. 112, 51–53CrossRefGoogle Scholar
  4. [4]
    Jenkins, J.T. (1991): Anisotropic elasticity for random arrays of identical spheres. In: Wu, J.J. et al. (eds.) Modern theory of anisotropic elasticity and its applications. SIAM, Philadelphia, pp. 368–377Google Scholar
  5. [5]
    Jenkins, J.T, La Ragione, L. (2001): Particle spin in anisotropic granular materials. Internat. J. Solids Structures 38, 1063–1069MATHCrossRefGoogle Scholar
  6. [6]
    Digby, P.J (1981): The effective elastic moduli of porous granular rocks. J. Appl. Mech. 48, 803–808ADSMATHCrossRefGoogle Scholar
  7. [7]
    Walton, K. (1987): The effective elastic moduli of a random packing of spheres. J. Mech. Phys. Solids 35, 213–216ADSMATHCrossRefGoogle Scholar
  8. [8]
    Cundall, P.A., Jenkins, J.T, Ishibashi, I. (1989): Evolution of elastic moduli in a deforming granular assembly. In: Biarez, J., Gourvès, R.. (eds.) Powders and grains. Balkema, Rotterdam, pp. 319–322Google Scholar
  9. [9]
    Jenkins, J.T, Cundall, P.A., Ishibashi, I. (1989): Micromechanical modeling of granular materials with the assistance of experiments and numerical simulations. In: Biarez, J., Gourvès, R. (eds.) Powders and grains. Balkema, Rotterdam, pp. 257–264Google Scholar
  10. [10]
    Norris, A.N., Johnson, D.L. (1997): Nonlinear elasticity of granular media. J. Appl. Mech. 64, 39–49ADSMATHCrossRefGoogle Scholar
  11. [11]
    Domenico, S.N. (1977): Elastic properties of unconsolidated porous sand reservoirs. Geophys. 42, 1339–1368CrossRefGoogle Scholar
  12. [12]
    Makse, H.A., Gland, N., Johnson, D.L., Schwartz, L.M. (1999): Why effective medium theory fails in granular materials. Phys. Rev. Lett. 83, 5070–5073ADSCrossRefGoogle Scholar
  13. [13]
    Jenkins, J.T (1988): Volume change in small strain axisymmetric deformations of a granular material. In: Satake, M., Jenkins, J.T. (eds.) Micromechanics of granular materials. Elsevier, Amsterdam, pp. 245–252Google Scholar
  14. [14]
    Chen, Y.C., Ishibashi, I., Jenkins, J.T. (1988): Dynamic shear modulus and fabric. I. Depositional and induced anisotropy. Géotechnique 38, 25–32CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 2003

Authors and Affiliations

  • James T. Jenkins
  • Luigi La Ragione

There are no affiliations available

Personalised recommendations