Gaussian Curvature and Babuška’s Paradox in the Theory of Plates

  • Cesare Davini


Within the functional framework of the trace spaces of H 2 functions on 2-D domains with corners, in this paper we discuss the geometrical reasons for the so-called Babuška’s paradox in the theory of plates and other related questions.


Gaussian Curvature Fourier Coefficient Duality Pairing Representation Formula Trace Space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Babuska, I. (1961): Stability of the domain of definition with respect to fundamental problems in the theory of partial differential equations especially in connection with the theory of elasticity I, II. Czechoslovak Math. J. 11, 76–105;MathSciNetGoogle Scholar
  2. [1a]
    165–203 (Russian)MathSciNetGoogle Scholar
  3. [2]
    Babuska, L, Pitkäranta, J. (1990): The plate paradox for hard and soft simple support. SIAM J. Math. Anal. 21, 551–576MathSciNetMATHCrossRefGoogle Scholar
  4. [3]
    Babuska, L, Scapolla, T. (1989): Benchmark computation and performance evaluation for a rhombic plate bending problem. Internat. J. Numer. Methods Engrg. 28, 155–179MathSciNetADSMATHCrossRefGoogle Scholar
  5. [4]
    Davini, C., Pitacco, I. (1998): Relaxed notions of curvature and a lumped strain method for elastic plates. SIAM J. Numer. Anal. 35, 677–691MathSciNetMATHCrossRefGoogle Scholar
  6. [5]
    Davini, C. (2002): T-convergence of external approximations in boundary value problems involving the bi-Laplacian. J. Comput. Appl. Math. To appearGoogle Scholar
  7. [6]
    Gagliardo, E. (1957): Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili. Rend. Sem. Mat. Univ. Padova, 27, 284–305MathSciNetMATHGoogle Scholar
  8. [7]
    Grisvard, P. (1985): Elliptic problems in non-smooth domains. Pitman, LondonGoogle Scholar
  9. [8]
    Grisvard, P. (1992): Singularities in boundary value problems. Springer, BerlinMATHGoogle Scholar
  10. [9]
    Lions, J.L., Magenes, E. (1972): Non-homogeneous boundary value problems and applications. Vol. I, Springer, HeidelbergMATHGoogle Scholar
  11. [10]
    Maz’ya, V.G., Nazarov, S.A. (1987): Paradoxes of limit passage in solutions of boundary value problems involving the approximation of smooth domains by polygonal domains. Math. USSR Izvestiya 29, 511–533ADSMATHCrossRefGoogle Scholar
  12. [11]
    Necas, J. (1967): Les méthodes directes en théorie des équations elliptiques. Masson, ParisMATHGoogle Scholar
  13. [12]
    Pogorelov, A. V. (1978): The Minkowski multidimensional problem. Winston, Washington, DCMATHGoogle Scholar
  14. [13]
    Suraci, S. (1997): Un nuovo metodo di approssimazione in analisi strutturale: applicazioni e confronti con il metodo degli elementi finiti. Thesis. Université degli Studi di Udine, UdineGoogle Scholar
  15. [14]
    Yakovlev, G.N. (1961): Boundary properties of functions of class W<Stack><Subscript>p</Subscript><Superscript>(1)</Superscript></Stack> on regions with angular points. Soviet Math. Dokl. 2, 1177–1180MATHGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 2003

Authors and Affiliations

  • Cesare Davini

There are no affiliations available

Personalised recommendations