Sepsis and Organ Dysfunction: An Overview of the New Science and New Biology

  • A. E. Baue
Conference paper


What is new and exciting in the new millennium about sepsis? Do we know more about it? Yes, and that is new and exciting. Do we know more about the contributions of sepsis and mediators to organ dysfunction? Yes, and that is new and exciting. Can we use this exciting information to better care for our patients? Not yet. Thus, there is a large discrepancy between how much we know and what we can do. This is a challenge. There are a number of reasons for the gulf between what we know and what we can do [1]. The excitement of molecular biology, genomic studies, and the human genome project cannot as yet be translated into clinical usefulness [2]. The process of science dissects phenomena and mediators — studies them in isolation — as in genetically pure animals or knockout mice with well-controlled experiments and only one variable. In patient care things are complex. Patients differ in age, sex, ethnicity, prior illness, chronic illness, genetic background, and life (antigen) experiences. These differences are becoming clearer as we learn of genetic polymorphisms and antigen exposures [3]. Sepsis is not a diagnosis or a disease and you cannot treat it. An infection which has become systemic should be called that — an infection with systemic manifestations.


Organ Dysfunction Systemic Inflammatory Response Syndrome Acute Respiratory Distress Syndrome Nosocomial Infection Multiple Organ Failure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bion JF, Brun-Buisson C (2000) Introduction — infection and critical illness: genetic and environmental aspects of susceptibility and resistance. Intensive Care Med 26: S1–S2PubMedCrossRefGoogle Scholar
  2. 2.
    Vincent J-L (2000) Microbial resistance: lessons from the EPIC study. Intensive Care Med 26: S3–S8PubMedCrossRefGoogle Scholar
  3. 3.
    Emmerson M (2000) Antibiotic usage and prescribing policies in the intensive care unit. Intensive Care Med 26: S26–S30PubMedCrossRefGoogle Scholar
  4. 4.
    van Deventer SJH (2000) Cytokine and cytokine receptor polymorphisms in infectious disease. Intensive Care Med 26: S98–S102PubMedCrossRefGoogle Scholar
  5. 5.
    Bellingan G (2000) Leukocytes: friend or foe. Intensive Care Med 26: S111–S118PubMedCrossRefGoogle Scholar
  6. 6.
    Cook D (2000) Ventilator associated pneumonia: perspectives on the burden of illness. Intensive Care Med 26: S31–S37PubMedCrossRefGoogle Scholar
  7. 7.
    Elliott T (2000) Intravascular catheter-related sepsis-novel methods of prevention. Intensive Care Med 26: S45–S50PubMedCrossRefGoogle Scholar
  8. 8.
    Marshall JC (2000) Clinical trials of mediator-directed therapy in sepsis: what have we learned? Intensive Care Med 26: S75–S83PubMedCrossRefGoogle Scholar
  9. 9.
    Brun-Buisson C (2000) The epidemiology of the systemic inflammatory response. Intensive Care Med 26: S64–S74PubMedCrossRefGoogle Scholar
  10. 10.
    Hawkey PM (2000) Mechanisms of resistance to antibiotics. Intensive Care Med 26: S9–S13PubMedCrossRefGoogle Scholar
  11. 11.
    Livermore DM (2000) Epidemiology of antibiotic resistance. Intensive Care Med 26: S14–S21PubMedCrossRefGoogle Scholar
  12. 12.
    Scott G (2000) Prevention and control of infections in intensive care. Intensive Care Med 26: S22–S25PubMedCrossRefGoogle Scholar
  13. 13.
    Jasny BR, Bloom FE (1998) It’s not rocket science — but it can save lives. Science 280: 1507PubMedCrossRefGoogle Scholar
  14. 14.
    Bonten MJM, Weinstein RA (1999) Bird’s-eye view of nosocomial infections in medical ICU: blue bugs, fungi, and device-days. Crit Care Med 27: 853–854PubMedCrossRefGoogle Scholar
  15. 15.
    Morell V (1997) Antibiotic resistance: road of no return. Science 278: 575–576Google Scholar
  16. 16.
    Fleenor-Ford A, Hayden MK, Weinstein RA (1999) Vancomycin-resistant enterococci: implications for surgeons. Surgery 125: 121–125PubMedCrossRefGoogle Scholar
  17. 17.
    Davis JM, Huycke MM, Wells CL et al (1996) Surgical infection society position paper on vancomycin resistant enterococcus. Arch Surg 131: 1061–1068PubMedCrossRefGoogle Scholar
  18. 18.
    Dahms RA, Johnson EM, Statz CL et al (1998) Third-generation cephalosporins and vancomycin as risk factors for postoperative vancomycin-resistant enterococcus infection. Arch Surg 133: 1343–1346PubMedCrossRefGoogle Scholar
  19. 19.
    Bonten MJM, Slaughter S, Hayden MK et al (1998) External sources of vancomycin-resistant enterococci for intensive care units. Crit Care Med 26: 2001–2004PubMedCrossRefGoogle Scholar
  20. 20.
    Farr B (1998) Hospital wards spreading vancomycin-resistant enterococci to intensive care units: returning coals to Newcastle. Crit Care Med 26: 1942–1943PubMedCrossRefGoogle Scholar
  21. 21.
    Chaix C, Durand-Zaleski I, Alberti C, Brun-Buisson C (1999) Control of endemic methicillin-resistant staphylococcus aureus. A cost-benefit analysis in an intensive care unit. JAMA 282: 1745–1751PubMedCrossRefGoogle Scholar
  22. 22.
    D’Agata EMC, Venkataraman L, DeGirolami P et al (1999) Colonization with broad-spectrum cephalosporin-resistant Gram-negative bacilli in intensive care units during a nonoutbreak period: prevalence, risk factors, and rate of infection. 27: 1090–1095Google Scholar
  23. 23.
    Harbarth S, Pittet D (1999) Multiresistance of Gram-negative bacteria in intensive care units: bad news from without. Crit Care Med 27: 1037–1038PubMedCrossRefGoogle Scholar
  24. 24.
    Fierer J, Guiney D (1999) Extended-spectrum β-lactamases a plague of plasmids. JAMA 281: 563–564PubMedCrossRefGoogle Scholar
  25. 25.
    Gleason TG, Addison KM, Caparelli D et al (1997) Emerging evidence of selection of fluconazole-tolerant fungi in surgical intensive care units. Arch Surg 132: 1197–1202PubMedCrossRefGoogle Scholar
  26. 26.
    Bieber D, Ramer SW, Wu C-Y et al (1998) Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. Science 280: 2114–2118PubMedCrossRefGoogle Scholar
  27. 27.
    Galán JE, Collmer A (1999) Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284: 1322–1328PubMedCrossRefGoogle Scholar
  28. 28.
    Hamburger ZA, Brown MS, Isberg RR, Bjorkman PJ (1999) Crystal structure of invasin: a bacterial integrin-binding protein. Science 286: 291–295PubMedCrossRefGoogle Scholar
  29. 29.
    Strauss E (1999) A symphony of bacterial voices. Science 284: 1302–1304PubMedCrossRefGoogle Scholar
  30. 30.
    Pennisi E (1999) Is it time to uproot the tree of life? Science 284: 1305–1307PubMedCrossRefGoogle Scholar
  31. 31.
    Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284: 1318–1322PubMedCrossRefGoogle Scholar
  32. 32.
    Adair CG, Gorman SP, Feron BM et al (1999) Implications of endotracheal tube biofilm for ventilator-associated pneumonia. Intensive Care Med 25: 1072–1076PubMedCrossRefGoogle Scholar
  33. 33.
    Morell V (1997) Antibiotic resistance: road of no return. Science 278: 575–576Google Scholar
  34. 34.
    Heeg K, Miethke T, Wagner H (1996) Superantigen-mediated lethal shock: the functional state of ligand-reactive T cells. In: Heeg K, Miethke T, Wagner H (eds) Current topics of microbiology. Springer-Verlag, Heidelberg Berlin New York, pp 83–100Google Scholar
  35. 35.
    Kaul R, McGeer A, Low DE et al (1997) Population-based surveillance for group a streptococcal necrotizing fascitis: clinical features, prognostic indicators, and microbiologic analysis of seventy-seven cases. Am J Med 103: 18–24PubMedCrossRefGoogle Scholar
  36. 36.
    Hoffmann JA, Kafatos FC, Janeway CA Jr, Ezekowitz RAB (1999) Phylogenetic perspectives in innate immunity. Science 284: 1313–1318PubMedCrossRefGoogle Scholar
  37. 37.
    Tang Y-Q, Yuan J, Ösapay K et al (1999) A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated α-defensins. Science 286: 498–502PubMedCrossRefGoogle Scholar
  38. 38.
    Gans T (1999) Defensins and host defense. Science 286: 420–421CrossRefGoogle Scholar
  39. 39.
    Fang X-M, Book M, Hoeft A, Stuber F (1999) Impaired inducible expression of human β-de-fensin gene in peripheral blood of patients with severe sepsis. Crit Care Med 27[Suppl]: A36CrossRefGoogle Scholar
  40. 40.
    Yang D, Chertov O, Bykovskaia SN et al (1999) β-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286: 525–528PubMedCrossRefGoogle Scholar
  41. 41.
    Stenger S, Rosat JP, Bloom BR et al (1999) Granulysin: a lethal weapon of cytolytic T cells. Immunol Today 20: 390–394PubMedCrossRefGoogle Scholar
  42. 42.
    Birmingham MC, Craig RR, Hafkin B et al (1999) Critical care patients with significant, resistant, Gram-positive infections enrolled in the linezolid compassionate use protocol. Crit Care Med 27[Suppl]: A33CrossRefGoogle Scholar
  43. 43.
    Moellering RC Jr (1999) A novel antimicrobial agent joins the battle against resistant bacteria. Ann Intern Med 130: 155–157PubMedGoogle Scholar
  44. 44.
    Enserink M (1999) Promising antibiotic candidate identified. Science 286: 2245–2247PubMedCrossRefGoogle Scholar
  45. 45.
    Breukink E, Wiedemann I, van Kraaij C et al (1999) Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286: 2361–2364PubMedCrossRefGoogle Scholar
  46. 46.
    Stone R (1993) Dèjà vu guides the way to new antimicrobial steroid. Science 259: 1125PubMedCrossRefGoogle Scholar
  47. 47.
    Alper J (1999) From the bioweapons trenches new tools for battling microbes. Science 284: 1754–1755PubMedCrossRefGoogle Scholar
  48. 48.
    Luiten EJT, Wim CJ, Lange JF, Bruining HA (1995) Controlled clinical trial of selective decontamination for the treatment of severe acute pancreatitis. Ann Surg 222: 57–65PubMedCrossRefGoogle Scholar
  49. 49.
    Lingnau W, Berger J, Javorsky F, Benzer H (1997) Selective gut decontamination in multiple trauma patients: a prospective, randomized trial. J Trauma 42: 687–694PubMedCrossRefGoogle Scholar
  50. 50.
    Braga M, Vignali A, Gianotti L et al (1995) Benefits of early postoperative enterai feeding in cancer patients. Infusionsther Tranfusionsmed 22: 280–284Google Scholar
  51. 51.
    Meduri GU, Cinn AJ, Leeper KV et al (1994) Corticosteroid rescue treatment of progressive fibroproiferation in late ARDS. Patterns of response and predictors of outcome. Chest 105: 1516–1527PubMedCrossRefGoogle Scholar
  52. 52.
    Baue AE (1994) Multiple organ failure, multiple organ dysfunction syndrome and the systemic inflammatory response syndrome-where do we stand? Shock 2: 385–397PubMedCrossRefGoogle Scholar
  53. 53.
    Baue AE, Durham R, Faist E (1998) Systemic inflammatory response syndrome (SiRS), multiple organ dysfunction syndrome (MODS), multiple organ failure (MOF): are we winning the battle? Shock 10: 79–89PubMedCrossRefGoogle Scholar
  54. 54.
    Baue AE (1997) Multiple organ failure, multiple organ dysfunction syndrome, and systemic inflammatory response syndrome: Why no magic bullets? Arch Surg 132: 703–707PubMedCrossRefGoogle Scholar
  55. 55.
    Thangathurai D, Charbonnet C, Wo CCJ et al (1996) Intraoperative maintenance of tissue perfusion prevents ARDS. New Horiz 4: 466–474PubMedGoogle Scholar
  56. 56.
    Shoemaker WC, Thangathurai D, Wo CCJ et al (1999) Intraoperative evaluation of tissue perfusion in high-risk patients by invasive and noninvasive hemodynamic monitoring. Crit Care Med 27: 2147–2152PubMedCrossRefGoogle Scholar
  57. 57.
    Schultz SG (1996) Homeostasis, humpty-dumpty and integrative biology. News Physiol Sci 11: 238–246Google Scholar
  58. 58.
    Buchman TG (1996) Physiologic stability and physiologic state. J Trauma 41: 599–605PubMedCrossRefGoogle Scholar
  59. 59.
    Zimmerman JE, Seneff M, Wood S, Knaus WA (1999) A comparison of outcome and resource use for stepdown units and ICU patients. Crit Care Med 27: 154CrossRefGoogle Scholar
  60. 60.
    Barie P, Eachempati SR, Hydo LJ (1999) Impact of a new intermediate care unit on utilization and outcomes of the surgical intensive care unit. Crit Care Med 27: 28CrossRefGoogle Scholar
  61. 61.
    Hopf HW, Hunt TK, West JM et al (1997) Wound tissue oxygen tension predicts the risk of wound infection in surgical patients. Arch Surg 132: 997–1004PubMedCrossRefGoogle Scholar
  62. 62.
    Leaper DJ, Ali B, Melling A (2000) Local or systemic warming reduces the risk of wound infection after clean surgery. Shock 13[Suppl 2]: 6ACrossRefGoogle Scholar
  63. 63.
    Baue AE (1999) Molecular biology and minimal surgery. Curr Opin Crit Care 5: 284–289CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 2001

Authors and Affiliations

  • A. E. Baue

There are no affiliations available

Personalised recommendations