Treatment of Sepsis and Endotoxemia by Extracorporeal Endotoxin Adsorption with Immobilised Human Serum Albumin

  • K. Reinhart
  • M. Zimmermann
Conference paper


Endotoxin (lipopolysaccharides = LPS) are heat-stable amphiphilic macromolecules located on the outer cell wall of Gram-negative bacteria. The LPS molecule consists of three structure elements [1]: the lipid A, a glucosamine unit that contains fatty acids with a 10- to 20-carbon-atom chain length, a carbohydrate core, and the polysaccharide O antigen with repeating sequences of either linear or branched oligosaccharides which vary in chain length among the various strains of bacteria [2]. Studies using X-ray crystallography suggest that the lipid A component of the molecule is in a highly ordered conformation within the outer membrane of Gram-negative bacteria and it is relatively concealed within this membrane, where it presumably has an important role in maintaining structural integrity.


Septic Shock Human Serum Albumin Severe Sepsis Extracorporeal Circuit Sepsis Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rietschel ET, Kirikae T, Schade FU et al (1994) Bacterial endotoxin: Molecular relationships of structure to activity and function. FASEB J 218: 217–225Google Scholar
  2. 2.
    Lüderitz O, Freudenberg MA, Galanos C et al (1982) Lipopolysaccharides of gram-negative bacteria. In: Razin S, Rottem S (eds) Current topics in membranes and transport. Academic, New York, vol 17, pp 79–151Google Scholar
  3. 3.
    Zähringer U, Lindner B, Rietschel ET (1994) Molecular structure of lipid A, the toxic center of bacterial lipopolysaccharides. Adv Carbohydr Chem Biochem 50: 211–276PubMedCrossRefGoogle Scholar
  4. 4.
    Galanos C, Lüderitz O, Rietschel ET et al (1985) Synthetic and natural Escherichia coli free lipid A express identical endotoxic activities. Eur J Biochem 148: 1–5PubMedCrossRefGoogle Scholar
  5. 5.
    Morrison DC, Ulevitch RJ (1978) The effects of bacterial endotoxins on host mediation systems. Am J Pathol 93: 526–617PubMedGoogle Scholar
  6. 6.
    Galanos C, Freudenberg MA, Katschinski T et al (1992) Tumor necrosis factor and host response to endotoxin. In: Ryan JL, Morrison DC (eds) Immunopharmacology and pathophysiology. CRC Press, Boca Raton, pp 75–102Google Scholar
  7. 7.
    Morrison DC, Cochrane CG (1974) Direct evidence for Hageman factor (factor XII) activation by bacterial lipopolysaccharides (endotoxins). J Exp Med 140: 797–811PubMedCrossRefGoogle Scholar
  8. 8.
    Van Deventer SJH, Büller HR, ten Cate JW et al (1990) Experimental endotoxemia in humans: Analysis of cytokine release and coagulation, fibrinolytic, and complement pathways. Blood 76: 2520–2526PubMedGoogle Scholar
  9. 9.
    Wright SD, Ramos RA, Tobias PS et al (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249: 1431–1433PubMedCrossRefGoogle Scholar
  10. 10.
    Nathan CF (1987) Secretory products of macrophages. J Clin Invest 79: 319–323PubMedCrossRefGoogle Scholar
  11. 11.
    Vick JA, Hehlman B, Heiffer MH (1971) Early histamine release and death due to endotoxin. Proc Soc Exp Biol Med 137: 902–906PubMedGoogle Scholar
  12. 12.
    Lüderitz T, Brandenburg K, Seydel U et al (1989) Structural and physicochemical requirements of endotoxins for the activation of arachidonic acid metabolism in the mouse peritoneal macrophages in vitro. Eur J Biochem 179: 11–16PubMedCrossRefGoogle Scholar
  13. 13.
    Braquet P, Touqui L, Shen TY, Vargaftig BB (1987) Perspectives in platelet-activating factor research. Pharmacol Rev 39: 97–112PubMedGoogle Scholar
  14. 14.
    Warren JS, Kunkel SL, Cunningham TW (1988) Macrophage-derived cytokines amplify immune complex-triggered oxygen responses by rat alveolar macrophages. Amer J Pathol 130: 498Google Scholar
  15. 15.
    Casey LC, Balk RA, Bone RC (1993) Plasma cytokine and endotoxin levels correlate with survival in patients with sepsis syndrome. Ann Int Med 119: 771–778PubMedGoogle Scholar
  16. 16.
    Guidet B, Barakett V, Vassal T et al (1994) Endotoxemia and bacteremia in patients with sepsis syndrome in the intensive care unit. Chest 106: 1194–1201PubMedCrossRefGoogle Scholar
  17. 17.
    Függer R, Hamilton G, Rogy M et al (1990) Prognostic significance of endotoxin determination in patients with severe intraabdominal infection. J Infect Dis 161: 1314–1315PubMedCrossRefGoogle Scholar
  18. 18.
    Stüber F, Petersen M, Bokelmann F, Schade U (1996) A genomic polymorphism within the TNF locus influences plasma tumor necrosis factor — concentrates and outcome of patients in severe sepsis. Crit Care Med 24: 381–384PubMedCrossRefGoogle Scholar
  19. 19.
    Hurley JC (1995) Endotoxemia: Methods of detection and clinical correlates. Clin Microbiol Rev 8: 268–292PubMedGoogle Scholar
  20. 20.
    Richardson RP, Rhyne CD, Fong Y et al (1989) Peripheral blood leukocyte kinetics following in vivo lipopolysaccharide (LPS) administration to normal human subjects. Influence of elicited hormones and cytokines. Ann Surg 210: 239–245PubMedCrossRefGoogle Scholar
  21. 21.
    Suffredini AF, Fromm RE, Parker MM et al (1989) The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med 321: 280–287PubMedCrossRefGoogle Scholar
  22. 22.
    Suffredini AF, Harpel PC, Parrillo JE (1989) Promotion and subsequent inhibition of plasminogen activation after administration of intravenous endotoxin to normal subjects. N Engl J Med 320: 1165–1172PubMedCrossRefGoogle Scholar
  23. 23.
    Fong Y, Marano MA, Moldawer LL et al (1990) The acute splanchnic and peripheral tissue metabolic response to endotoxin in humans. J Clin Invest 85: 1896–1904PubMedCrossRefGoogle Scholar
  24. 24.
    Kramer A, Wigger W, Rieger J (1977) Arteriovenous haemofiltration: A new and simple method for treatment of over hydrated patients resistant to diuretics. Klin Wochenschr 55: 1121–1122PubMedCrossRefGoogle Scholar
  25. 25.
    Groeneveld ABJ (1990) Septic shock and multiple organ failure: Treatment with hemofiltration. Int Care Med 16: 489–490CrossRefGoogle Scholar
  26. 26.
    Freeman BD, Yatsiv I, Natanson C et al (1995) Continuous arteriovenous hemofiltration does not improve survival in a canine model of septic shock. J Am Coll Surg 180: 286–292PubMedGoogle Scholar
  27. 27.
    Heering P, Morgera S, Schmitz FJ et al (1997) Cytokine removal and cardiovascular hemodynamics in septic patients with continuous venovenous hemofiltration. Intensive Care Med 23: 288–296PubMedCrossRefGoogle Scholar
  28. 28.
    Aoki H, Kodama M, Tani T, Hanasawa K (1994) Treatment of sepsis by extracorporeal elimination of endotoxin using polymyxin B-immobilized fiber. Am J Surg 167: 412–17PubMedCrossRefGoogle Scholar
  29. 29.
    Tani T, Hanasawa K, Endo Y et al (1998) Therapeutic apheresis for septic patients with organ dysfunction: Hemoperfusion using a polymyxin B immobilized column. Artif Organs 22(12): 1038–1044PubMedCrossRefGoogle Scholar
  30. 30.
    Zimmermann M, Busch K, Kuhn S, Zeppezauer M (1999) Endotoxin adsorbent based on immobilized human serum albumin. Clin Chem Lab Med 37: 373–379PubMedCrossRefGoogle Scholar
  31. 31.
    Dandona P, Nix D, Wilson MF (1994) Procalcitonin increase after endotoxin injection in normal subjects. JCE & M 79: 1605–1608Google Scholar
  32. 32.
    Niebauer J, Volk HD, Kemp M et al (1999) Endotoxin and immune activation in chronic heart failure: A prospective cohort study. The Lancet 353: 1838–1842CrossRefGoogle Scholar
  33. 33.
    Martinez-Pellús AE, Merino P, Bru M et al (1997) Endogenous endotoxemia of intestinal origin during cardiopulmonary bypass. Intens Care Med 23: 1251–1257CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 2001

Authors and Affiliations

  • K. Reinhart
  • M. Zimmermann

There are no affiliations available

Personalised recommendations