Reperfusion arrhythmias: prevention and management

  • J. L. Atlee
Conference paper


Cardiovascular disease caused nearly 20 million deaths worldwide in 1990, with > 40% of these due to ischaemic heart disease (IHD) [1]. About 1 million people suffer acute myocardial infarctions (MI) each year in the United Sates [1]. Sudden cardiac death claims > 400,000 lives each year in the United States, with most due to IHD [2]. Ventricular fibrillation (VF) or tachycardia (VT) that degenerates into VF are believed responsible for most sudden cardiac deaths [2]. VT/VF also complicate thrombolytic therapy, percutaneous coronary angioplasty (PCTA), and coronary artery bypass surgery (CABG) in patients with IHD, and are “electrical markers” of myocardial ischaemia-reperfusion injury (I/R). I/R arrhythmias also include frequent and/or complex forms of ventricular extrasystoles, bradyarrhythmias, and asystole. Further, after open-heart surgery with cardiopulmonary bypass (CPB), there is a 20%-40% incidence of atrial fibrillation (AFB) and/or atrial flutter (AFT) [3,4]. Likely inciting factors include inadequate atrial protection, excessive catecholamines, and injury related to CPB and/or I/R.


KATP Channel Pulseless Electrical Activity Advance Cardiac Life Support Ischaemic Precondition Reperfusion Arrhythmia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gaziano JM (2001) Global burden of cardiovascular disease. In: Braunwald E, Zipes DP, Libby P (eds) Heart disease., 6th edn Saunders, Philadelphia, pp 1–18Google Scholar
  2. 2.
    Myerburg RJ (2001) Sudden cardiac death.: exploring the limits of our knowledge. J Cardiovasc Electrophysiol 12:369–81PubMedCrossRefGoogle Scholar
  3. 3.
    Mathew JP, Parks R, Savino JS, et al (1996) Atrial fibrillation following coronary artery bypass surgery. JAMA 276:300–306PubMedCrossRefGoogle Scholar
  4. 4.
    Daubert JC, Mabo P (2000) Atrial pacing for the prevention of postoperative atrial fibrillation: how and where to pace? J Am Coll Cardiol 35:1423–1427PubMedCrossRefGoogle Scholar
  5. 5.
    Kloner RA, Jennings RB (2001) Consequences of brief ischemia. I. Circulation 104: 2981–2989PubMedCrossRefGoogle Scholar
  6. 6.
    Kloner RA, Jennings RB (2001) Consequences of brief ischemia. II. Circulation 104: 3158–3167PubMedCrossRefGoogle Scholar
  7. 7.
    Jennings RB, Murry CE, Steenbergen C Jr, et al (1990) Development of cell injury in sustained acute ischemia. Circulation 82 [Suppl]: II2–12PubMedGoogle Scholar
  8. 8.
    Atlee JL, Bosnjak ZJ (1990) Mechanisms for cardiac dysrhythmias during anesthesia. Anesthesiology 72:347–374PubMedCrossRefGoogle Scholar
  9. 9.
    Jeroudi MO, Triana FJ, Patel BS, et al (1990) Effect of superoxide dismutase and catalase, given separately, on myocardial “stunning“. Am J Physiol 259:H889-H901PubMedGoogle Scholar
  10. 10.
    Gross GJ, Färber NE, Hardman HF, et al (1986) Beneficial actions of superoxide dismutase and catalase in stunned myocardium of dogs. Am J Physiol 250:H372-H377PubMedGoogle Scholar
  11. 11.
    Flaherty JT, Pitt B, Gruber JW, et al (1994) Recombinant human superoxide dismutase (h-SOD) fails to improve recovery of ventricular function in patients undergoing coronary angioplasty for acute myocardial infarction. Circulation 89:1982–1991PubMedCrossRefGoogle Scholar
  12. 12.
    Sheiban I, Tonni S, Marini A, et al (1995) Clinical and therapeutic implications of chronic left ventricular dysfunction in coronary artery disease. Am J Cardiol 75:23E-30EPubMedCrossRefGoogle Scholar
  13. 13.
    Jeroudi MO, Cheirif J, Habib G, et al (1994) Prolonged wall motion abnormalities after chest pain at rest in patients with unstable angina: a possible manifestation of myocardial stunning. Am Heart J 127:1241–1250PubMedCrossRefGoogle Scholar
  14. 14.
    Kloner RA, Allen J, Cox TA, et al (1991) Stunned left ventricular myocardium after exercise treadmill testing in coronary artery disease. Am J Cardiol 68:329–334PubMedCrossRefGoogle Scholar
  15. 15.
    Tsoukas A, Ikonomidis J, Cokkinos P, et al (1997) Significance of left ventricular dysfunction during recovery after dobutamine stress echocardiography. J Am Coll Cardiol 30:621–626PubMedCrossRefGoogle Scholar
  16. 16.
    Lee DS, Yeo JS, Chung J-K, et al (2000) Transient prolonged stunning induced by dipyridamole and shown on 1- and 24-hour post stress 99m-Tc-MIBI gated SPECT. J Nucl Med 41:27–35PubMedGoogle Scholar
  17. 17.
    Rahimtoola SH (1989) The hibemating myocardium. Am Heart J 117:211–221PubMedCrossRefGoogle Scholar
  18. 18.
    Camici PG, Dutka DP (2001) Repetitive stunning, hibernation, and heart failure: contribution of PET to establishing a link. Am J Physiol 280:H929-H936Google Scholar
  19. 19.
    Hagar JM, Hale SL, Kloner RA (1991) Effect of preconditioning ischemia on reperfusion arrhythmias after coronary artery occlusion and reperfusion in the rat. Circ Res 68:61–68PubMedCrossRefGoogle Scholar
  20. 20.
    Ovize M, Aupetit JF, Rioufol G, et al (1995) Preconditioning reduces infarct size but accelerates time to ventricular fibrillation in ischemic pig heart. Am J Physiol 269:H72-H79PubMedGoogle Scholar
  21. 21.
    Figueras J, Segura R, Bermejo B (1996) Repeated 15-minute coronary occlusions in pigs increase occlusion arrhythmdas but decrease reperfusion arrhythmias that are associated with extracellular hypokalemia. J Am Coll Cardiol 28:1589–1597PubMedCrossRefGoogle Scholar
  22. 22.
    Sun W, Wainwright CL (1997) The role of nitric oxide in modulating ischaemia-induced arrhythmias in rats. J Cardiovasc Pharm 29:554–562CrossRefGoogle Scholar
  23. 23.
    Pasceri V, Lanza GA, Patti G, et al (1996) Preconditioning by transient myocardial ischemia confers protection against ischemia-induced ventricular arrhythmias in variant angina. Circulation. 94:1850–1856PubMedCrossRefGoogle Scholar
  24. 24.
    Airaksinen KE, Huikuri HV (1997) Antiarrhythmic effect of repeated coronary occlusion during balloon angioplasty. J Am Coll Cardiol 29:1035–1038PubMedCrossRefGoogle Scholar
  25. 25.
    Okishige K, Yamashita K, Yoshinaga H, et al (1996) Electrophysiologic effects of ischemic preconditioning on QT dispersion during coronary angioplasty. J Am Coll Cardiol 28:70–73PubMedCrossRefGoogle Scholar
  26. 26.
    Warltier DC, Kersten JR, Pagel PS, et al (2002) Anesthetic preconditioning: serendipity and science. Anesthesiology 97:1–3PubMedCrossRefGoogle Scholar
  27. 27.
    Opie LH (2001) Normal and abnormal cardiac function. In: Braunwald E, Zipes DP, Libby P (eds) Heart disease. Saunders, Philadelphia, pp 443–478Google Scholar
  28. 28.
    Kersten JR, Orth KG, Pagel PS, et al (1997) Role of adenosine in isoflurane-induced cardioprotection. Anesthesiology 86:1128–1139PubMedCrossRefGoogle Scholar
  29. 29.
    Roscoe AK, Christensen JD, Lynch C 3rd (2000) Isoflurane, but not halothane, induces protection of human myocardium via adenosine Al receptors and adenosine triphosphate-sensitive potassium channels. Anesthesiology 92:1692–1701PubMedCrossRefGoogle Scholar
  30. 30.
    Toller WG, Montgomery MW, Pagel PS (1999) Isoflurane-enhanced recovery of canine stunned myocardium: role for protein kinase C? Anesthesiology 91:713–722PubMedCrossRefGoogle Scholar
  31. 31.
    Toller WG, Kersten JR, Gross ER, et al (2000) Isoflurane preconditions myocardium against infarction via activation of inhibitory guanine nucleotide binding proteins. Anesthesiology 92:1400–1407PubMedCrossRefGoogle Scholar
  32. 32.
    Kersten JR, Schmeling TJ, Pagel PS, et al (1997) Isoflurane mimics ischemic preconditioning via activation of K(ATP) channels: reduction of myocardial infarct size with an acute memory phase. Anesthesiology 87:361–370PubMedCrossRefGoogle Scholar
  33. 33.
    Toller WG, Gross ER, Kersten JR, et al (2000) Sarcolemmal and mitochondrial adenosine triphosphate-dependent potassium channel mechanism of desflurane-induced cardioprotection. Anesthesiology 92:1731–1739PubMedCrossRefGoogle Scholar
  34. 34.
    Piriou V, Chiari P, Knezynski S, et al (2000) Prevention of isoflurane-induced preconditioning by 5-hydroxydecanoate and gadolinium: possible involvement of mitochondrial adenosine triphosphate-sensitive potassium and stretch-activated channels. Anesthesiology 93:756–764PubMedCrossRefGoogle Scholar
  35. 35.
    Kehl F, Krolikowski JG, Mraovic B, et al (2002) Is isoflurane-induced preconditioning dose related? Anesthesiology 96:675–680PubMedCrossRefGoogle Scholar
  36. 36.
    Toller WG, Kersten JR, Pagel PS, et al (1999) Sevoflurane reduces myocardial infarct size and decreases the time threshold for ischemic preconditioning. Anesthesiology 91:1437–1446PubMedCrossRefGoogle Scholar
  37. 37.
    Van Winkle DM, Thornton JD, Downey DM, et al (1991) The natural history of preconditioning: cardioprotection depends on the duration of transient ischemia and time to subsequent ischemia. Coron Artery Dis 2:613–619Google Scholar
  38. 38.
    Zaugg M, Lucchinetti MS, Spahn DR, et al (2002) Volatile anesthetics mimic cardiac preconditioning by priming the activation of mitochondrial KATP channels via multiple signaling pathway. Anesthesiology 97:4–14PubMedCrossRefGoogle Scholar
  39. 39.
    Zaugg M, Lucchinetti MS, Spahn DR, et al (2002) Differential effects of anesthetics on mitochondrial KATP channel activity and cardiomyocyte protection. Anesthesiology 97:15–21PubMedCrossRefGoogle Scholar
  40. 40.
    Hanouz J-L, Yvon A, Massetti M, et al (2002) Mechanisms of desflurane-induced preconditioning in isolated human right atria in vitro. Anesthesiology 97:33–41PubMedCrossRefGoogle Scholar
  41. 41.
    Kwok W-M, Martinelli AT, Kazuhiro F, et al (2002) Differential modulation of the cardiac adenosine triphosphate-sensitive potassium channel by isoflurane and halothane. Anesthesiology 97:50–56PubMedCrossRefGoogle Scholar
  42. 42.
    Fugimoto F, Bosnjak ZJ, Kwok W-M (2002) Isoflurane-induced facilitation of the cardiac sarcolemmal KATP channel. Anesthesiology 2002:57–65CrossRefGoogle Scholar
  43. 43.
    Myerburg RJ, Castellanos A (2001) Cardiac arrest and sudden cardiac death. In: Braunwald E, Zipes DP, Libby P (eds) Heart disease. Saunders, Philadelphia, pp 890–931Google Scholar
  44. 44.
    Atlee JL (1997) Perioperative cardiac dysrhythmias: diagnosis and management. Anesthesiology. 86:1397–1424PubMedCrossRefGoogle Scholar
  45. 45.
    Mentzer RM Jr, Birjiniuk V, Khuri S, et al (1999) Adenosine myocardial protection: preliminary results of a phase II clinical trial Ann Surg 229:643–649Google Scholar
  46. 46.
    Haroun-Bizri S, Khoury SS, Chehab IR, et al (2001) Does isoflurane optimize myocardial protection during cardiopulmonary bypass? J Cardiothorac Vase Anesth 15:418–421CrossRefGoogle Scholar
  47. 47.
    De Hert S, Broecke P ten, Mertens S, et al (2002) Sevoflurane but not propofol preserves myocardial function in coronary surgery patients. Anesthesiology 97:42–49PubMedCrossRefGoogle Scholar
  48. 48.
    Belhomme D, Peynet J, Louzy M, et al (1999) Evidence for preconditioning by isoflurane in coronary artery bypass graft surgery. Circulation 100:340–344CrossRefGoogle Scholar
  49. 49.
    Penta de Peppo A, Polisca P, Tomai F, et al (1999) Recovery of LV contractility in man is enhanced by preischemic administration of enflurane. Ann Thorac Surg 68:112–118CrossRefGoogle Scholar
  50. 50.
    Hill GE (1998) Cardiopulmonary bypass-induced inflammation: is it important? J Cardiothorac Vase Anesth 12:21–25Google Scholar
  51. 51.
    Formigli L, Manneschi LI, Nediani C, et al (2001) Are macrophages involved in early myocardial reperfusion injury?. Ann Thorac Surg 71:1596–1602PubMedCrossRefGoogle Scholar
  52. 52.
    McCarthy RJ, Tuman KJ, O’Connor C (1999) Aprotinin pretreatment diminishes postischemic myocardial contractile dysfunction in dogs. Anesth Analg 89:1096–1100PubMedCrossRefGoogle Scholar
  53. 53.
    Hendrikx M, Rega F, Jamaer L, et al (2001). Na(+)/H(+)-exchange inhibition and aprotinin administration: promising tools for myocardial protection during minimally invasive CABG. Eur J Cardiothorac Surg 19:633–639PubMedCrossRefGoogle Scholar
  54. 54.
    Gurevitch J, Barak J, Hochhauser E, et al (1994) Aprotinin improves myocardial recovery after ischemia and reperfusion. Effects of the drug on isolated rat hearts J Thorac Cardiovasc Surg 108:109–118Google Scholar
  55. 55.
    Wendel HP, Heller W, Michel J, et al (1995) Lower cardiac troponin T levels in patients undergoing cardiopulmonary bypass and receiving high-dose aprotinin therapy indicate reduction of perioperative myocardial damage. J Thorac Cardiovasc Surg 109:1164–1172PubMedCrossRefGoogle Scholar
  56. 56.
    Broche VF, Suarez AR, Olembe E, et al (1996) Aprotinin effects related to oxidative stress in cardiosurgery with mechanical cardiorespiratory support (CMCS). Ann NY Acad Sci 793:521–524PubMedCrossRefGoogle Scholar
  57. 57.
    Bull DA, Connors RC, Albanil A, et al (2000) Aprotinin preserves myocardial biochemical function during cold storage through suppression of tumor necrosis factor. J Thorac Cardiovasc Surg 119:242–250PubMedCrossRefGoogle Scholar
  58. 58.
    Anonymous (2001) Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. 7. The era of reperfusion. 1. Acute coronary syndromes (acute myocardial infarction). The American Heart Association in collaboration with the International Liaison Committee on Resuscitation. Circulation 102:172–203Google Scholar
  59. 59.
    MacMahon S, Collins R, Peto R, et al (1988) Effects of prophylactic lidocaine in suspected acute myocardial infarction. An overview of results from the randomized, controlled trials JAMA 260:1910–1916Google Scholar
  60. 60.
    Anonymous (2001) Guidelines 2000 for cardiopulmonary resuscitation and emergency cardiovascular care. 6. Advanced cardiovascular life support. 5. Pharmacology 1: agents for arrhythmias. The American Heart Association in collaboration with the International Liaison Committee on Resuscitation. Circulation 102:112–128Google Scholar
  61. 61.
    Anonymous (2001) Guidelines 2000 for cardiopuhnonary resuscitation and emergency cardiovascular care. 6. Advanced cardiovascular life support 2. Defibrillation. The American Heart Association in collaboration with the International Liaison Committee on Resuscitation. Circulation 102:90–94Google Scholar
  62. 62.
    Levine JH, Massumi A, Scheinman M, et al (1996) Intravenous amiodarone for recurrent sustained hypotensive ventricular tachyarrhythmias. J Am Coll Cardiol 27:67–75PubMedCrossRefGoogle Scholar
  63. 63.
    Scheimann MM, Levine JH, Cannom DS et al (1995) Dose-ranging study of intravenous amiodarone in patients with life-threatening ventricular tachyarrhythmias. Circulation 92: 3264–3272CrossRefGoogle Scholar
  64. 64.
    Kowey PR, Levine JH, Herre JM, et al (1995) Randomized, double-blind comparison of intravenous amiodarone and bretylium in the treatment of patients with recurrent, hemodynamically destabilizing ventricular tachycardia or fibrillation. Circulation 92:3255–3263PubMedCrossRefGoogle Scholar
  65. 65.
    Kudenchuk PJ, Cobb LA, Copass MK, et al (1999) Amiodarone for resuscitation after out-of-hospital cardiac arrest due to ventricular fibrillation. N Engl J Med 341:871–878PubMedCrossRefGoogle Scholar
  66. 66.
    Dorian P, Cass D, Schwartz B, et al (2002) Amiodarone as compared with lidocaine for shock-resistant ventricular fibrillation. N Engl J Med 346:884–890PubMedCrossRefGoogle Scholar
  67. 67.
    Anonymous (2001) Guidelines 2000 for cardiopulmonary resuscitation and emergency cardiovascular care. 6. Advanced cardiovascular life support. 7. Algorithm approach to ACLS emergencies: 7C a guide to the intemational guidelines. The American Heart Association in collaboration with the Intemational Liaison Committee on Resuscitation. Circulation 102:142–157Google Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • J. L. Atlee

There are no affiliations available

Personalised recommendations