Assessment of preload

  • V. Piriou
  • B. Gostoli
  • D. Jacques
Conference paper


Preload is the “load before the heart”. It is determined by the venous retum and is entirely dependent on intravascular volemia. Preload is measured during the end-diastole; it is defined as “the force acting to stretch the left ventricular fibers at the end of diastole and to determine the maximal resting lengths of the sarcomeres”. Frank Starling relationship is based on preload: when the ventricles fill to higher atrial pressures, ventricular volume and strength of contraction increase, resulting in an increase in stroke volume, until reaching a plateau.


Pulmonary Capillary Wedge Pressure Fluid Responsiveness Stroke Volume Variation Fluid Challenge Mitral Inflow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121:2000–2008PubMedCrossRefGoogle Scholar
  2. 2.
    Preisman S, DiSegni E, Vered Z, et al (2002) Left ventricular preload and function during graded haemorrhage and retransfusion in pigs: analysis of arterial pressure waveform and correlation with echocardiography. Br J Anaesth 88:716–718PubMedCrossRefGoogle Scholar
  3. 3.
    Calvin JE, Driedger AA, Sibbald WJ (1981) Does the pulmonary capillary wedge pressure predict left ventricular preload in critically ill patients? Crit Care Med 9:437–443PubMedCrossRefGoogle Scholar
  4. 4.
    Reuse C, Vincent JL, Pinsky MR (1990) Measurements of right ventricular volumes during fluid challenge. Chest 98:1450–1454PubMedCrossRefGoogle Scholar
  5. 5.
    Michard F, Boussat S, Chemla D, et al (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138PubMedCrossRefGoogle Scholar
  6. 6.
    Tavemier B, Makhotine O, Lebuffe G, et al (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89:1313–1321CrossRefGoogle Scholar
  7. 7.
    Gnaegi A, Feihl F, Perret C (1997) Intensive care physicians’ insufficient knowledge of right-heart catheterization at the bedside: time to act? Crit Care Med 25:213–220PubMedCrossRefGoogle Scholar
  8. 8.
    Tuman KJ, Carroll GC, Ivankovich AD (1989) Pitfalls in interpretation of pulmonary artery catheter data. J Cardiothorac Anesth 3:625–6419.PubMedCrossRefGoogle Scholar
  9. 9.
    Bridges EJ, Woods SL (1993) Pulmonary artery pressure measurement: state of the art. Heart Lung 22:99–111PubMedGoogle Scholar
  10. 10.
    Gomez CM, Palazzo MG (1998) Pulmonary artery catheterization in anaesthesia and intensive care. Br J Anaesth 81:945–956PubMedCrossRefGoogle Scholar
  11. 11.
    Crexells C, Chatterjee K, Forrester JC, et al (1973) Optimal level of filHng pressure in the left side of the heart in acute myocardial infarction. New Engl J Med 289:1263–1266PubMedCrossRefGoogle Scholar
  12. 12.
    Tousignant CP, Walsh F, Mazer CD (2000) The use of transesophageal echocardiography for preload assessment in critically ill patients. Anesth Analg 90:351–355PubMedGoogle Scholar
  13. 13.
    Douglas PS, Edmunds LH, Sutton MS, et al (1987) Unrehability of hemodynamic indexes of left ventricular size during cardiac surgery. Ann Thorac Surg 44:31–34PubMedCrossRefGoogle Scholar
  14. 14.
    Axler O, Tousignant C, Thompson CR, et al (1997) Small hemodynamic effect of typical rapid volume infusions in critically ill patients. Crit Care Med 25:965–970PubMedCrossRefGoogle Scholar
  15. 15.
    Baek SM, Makabali GG, Bryan-Brown CW, et al (1975) Plasma expansion in surgical patients with high central venous pressure (CVP); the relationship of blood volume to hematocrit, CVP, pulmonary wedge pressure, and cardiorespiratory changes. Surgery 78:304–315PubMedGoogle Scholar
  16. 16.
    Weil MH, Henning RJ (1979) New concepts in the diagnosis and fluid treatment of circulatory shock. Thirteenth annual Becton, Dickinson and Company Oscar Schwidetsky Memorial Lecture. Anesth Analg 58:124–132PubMedCrossRefGoogle Scholar
  17. 17.
    Cheung AT, Savino JS, Weiss SJ, et al (1994) Echocardiographic and hemodynamic indexes of left ventricular preload in patients with normal and abnormal ventricular function. Anesthesiology 81:376–387PubMedCrossRefGoogle Scholar
  18. 18.
    Feissel M, Michard F, Mangin I, et al (2001) Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest 119:867–873PubMedCrossRefGoogle Scholar
  19. 19.
    Swenson JD, Harkin C, Pace N, et al (1996) Transesophageal echocardiography: an objective tool in defining maximum ventricular response to intravenous fluid therapy. Anesth Analg 83:1149–1153PubMedGoogle Scholar
  20. 20.
    Leung JM, Levine EH (1994) Left ventricular end-systolic cavity obliteration as an estimate of intraoperative hypovolemia. Anesthesiology 81:1102–1109PubMedCrossRefGoogle Scholar
  21. 21.
    Buhre W, Wey land A, Schorn B, et al (1999) Changes in central venous pressure and pulmonary capillary wedge pressure do not indicate changes in right and left heart volume in patients undergoing coronary artery bypass surgery. Eur J Anaesthesiol 16:11–17PubMedGoogle Scholar
  22. 22.
    Hansen RM, Viquerat CE, Matthay MA, et al (1986) Poor correlation between pulmonary arterial wedge pressure and left ventricular end-diastolic volume after coronary artery bypass graft surgery. Anesthesiology 64:764–770PubMedCrossRefGoogle Scholar
  23. 23.
    Calvin JE, Driedger AA, Sibbald WJ (1981) Does the pulmonary capillary wedge pressure predict left ventricular preload in critically ill patients? Crit Care Med 9:437–443PubMedCrossRefGoogle Scholar
  24. 24.
    Appleton CP, Hatle LK, Popp RL (1988) Relation of transmitral flow velocity patterns to left ventricular diastolic function: new insights from a combined hemodynamic and Doppler echocardiographic study. J Am Coll Cardiol 12:426–440PubMedCrossRefGoogle Scholar
  25. 25.
    Vanoverschelde JL, Robert AR, Gerbaux A, et al (1995) Noninvasive estimation of pulmonary arterial wedge pressure with Doppler transmitral flow velocity pattern in patients with known heart disease. Am J Cardiol 75:383–389PubMedCrossRefGoogle Scholar
  26. 26.
    Yamamoto K, Nishimura RA, Redfield MM (1996) Assessment of mean left atrial pressure from the left ventricular pressure tracing in patients with cardiomyopathies. Am J Cardiol 78:107–110PubMedCrossRefGoogle Scholar
  27. 27.
    Gorcsan III J, Snow FR, Paulsen W, et al (1991) Noninvasive estimation of left atrial pressure in patients with congestive heart failure and mitral regurgitation by Doppler echocardiography. Am Heart J 121:858–863PubMedCrossRefGoogle Scholar
  28. 28.
    Nishimura RA, Abel MD, Hatle LK, et al (1989) Significance of Doppler indices of diastolic filling of the left ventricle: comparison with invasive hemodynamics in a canine model. Am Heart J 118:1248–1258PubMedCrossRefGoogle Scholar
  29. 29.
    Cecconi M, Manfrin M, Zanoli R, et al (1996) Doppler echocardiographic evaluation of left end-diastolic pressure in patients with coronary artery disease. J Am Soc Echocardiogr 9:241–250PubMedCrossRefGoogle Scholar
  30. 30.
    Oki T, Iuchi A, Tabata T, et al (1997) Transesophageal pulsed Doppler echocardiographic evaluation of left atrial systolic performance in hypertrophic cardiomyopathy: combined analysis of transmitral and pulmonary venous flow velocities. Clin Cardiol 20:47–54PubMedCrossRefGoogle Scholar
  31. 31.
    Citrin BS, Mensah GA, Byrd BF (1995) Pulmonary vein Doppler flow patterns specific for elevated left ventricular filling pressures in older cardiac patients are common in healthy adults 40 years old. Am J Cardiol 76:730–733PubMedCrossRefGoogle Scholar
  32. 32.
    Malkowski MJ, Guo R, Gray PG, et al (1995) Is the puhnonary venous-transmitral A-wave duration difference altered by age and hypertension? Am J Cardiol 76:722–724PubMedCrossRefGoogle Scholar
  33. 33.
    Yamada H, Oki T, Tabata T, et al (1998) Differences in transmitral flow velocity pattern during increase in preload in patients with abnormal left ventricular relaxation. Cardiology 89:152–158PubMedCrossRefGoogle Scholar
  34. 34.
    Brun P, Tribouilloy C, Duval AM, et al (1992) Left ventricular flow propagation during early filling is related to wall relaxation: a color M-mode Doppler analysis. J Am Coll Cardiol 20:420–432PubMedCrossRefGoogle Scholar
  35. 35.
    Garcia MJ, Palac RT, Malenka DJ, et al (1999) Color M-mode Doppler flow propagation velocity is a relatively preload-independent index of left ventricular filling. J Am Soc Echocardiogr 12:129–137PubMedCrossRefGoogle Scholar
  36. 36.
    Garcia MJ, Smedira NG, Greenberg NL, et al (2000) Color M-mode Doppler flow propagation velocity is a preload insensitive index of left ventricular relaxation: animal and human validation. J Am Coll Cardiol 35:201–208PubMedCrossRefGoogle Scholar
  37. 37.
    Garcia MJ, Thomas JD, Klein AL (1998) New Doppler echocardiographic applications for the study of diastohc function. J Am Coll Cardiol 32:865–875PubMedCrossRefGoogle Scholar
  38. 38.
    Møller JE, Poulsen SH, Sondergaard E, et al (2000) Preload dependence of color M-mode Doppler flow propagation velocity in controls and in patients with left ventricular dysfunction. J Am Soc Echocardiogr 13:902–909PubMedCrossRefGoogle Scholar
  39. 39.
    Isaaz K, Thompson A, Ethevenot G, et al (1989) Doppler echocardiographic measurement of low velocity motion of the left ventricular posterior wall. Am J Cardiol 64:66–75PubMedCrossRefGoogle Scholar
  40. 40.
    Nagueh SF, Middleton KJ, Kopelen HA, et al (1997) Doppler tissue imaging: a non invasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 30:1527–1533PubMedCrossRefGoogle Scholar
  41. 4L.
    Firstenberg MS, Levine BD, Garcia MJ, et al (2000) Relationship of echocardiographic indices to pulmonary capillary wedge pressures in healthy volunteers. J Am Coll Cardiol 36:1664–1669PubMedCrossRefGoogle Scholar
  42. 42.
    Linton NWF, Linton RAF (2000) Estimation of changes in cardiac output form the arterial blood pressure waveform in the upper limb. Br J Anaesth 86:486–496CrossRefGoogle Scholar
  43. 43.
    Sakka S, Bredle D, Reinhart K, et al (1999) Comparison between intrathoracic blood volume and cardiac filling pressures in the early phase of septic shock. Crit Care Med 14:78–83Google Scholar
  44. 44.
    Rodig G, Prasser C, Keyl C, et al (1999) Continuous cardiac output measurement pulse contour analysis vs thermodilution technique in cardiac surgical patients. Br J Anaesth 4:525–530CrossRefGoogle Scholar
  45. 45.
    Goedje O, Hoeke K, Lichtwarck-Aschoff, et al (1999) Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour analysis: comparison with pulmonary arterial thermodilution. Crit Care Med 27:2407–2412PubMedCrossRefGoogle Scholar
  46. 46.
    Godje O, Peyerl M, Seebauer T, et al (1998) Central venous pressure, pulmonary capillary wedge pressure, intrathoracic blood volumes as preload indicators in cardiac surgery patients. Eur J Cardiothorac Surg 13:533–540PubMedCrossRefGoogle Scholar
  47. 47.
    Wiesenack C, Prasser C, Keyl C, et al (2001) Assement of intrathoracic blood volume as an indicator of cardiac preload. J Cardiothorac Anesth 15:584–588CrossRefGoogle Scholar
  48. 48.
    Mundigler G, Geog M, Zehetgruber M, et al (2000) Limitations of the transpulmonary indicator dilution method for assessment of preload changes in critically ill patients with reduced left ventricular function. Intensive Care Med 28:2231–2239Google Scholar
  49. 49.
    Diebel LN, Wilson RF, Tagett MG, et al (1992) End-diastolic volume. A better indicator of preload in the critically ill. Arch Surg 127:817–821PubMedCrossRefGoogle Scholar
  50. 50.
    Wagner JG, Leatherman JW (1998) Right ventricular end-diastolic volume as a predictor of the hemodynamic response to a fluid challenge. Chest 113:1048–1054PubMedCrossRefGoogle Scholar
  51. 51.
    Diebel L, Wilson RF, Heins J, et al (1994) End-diastolic volume versus pulmonary artery wedge pressure in evaluating cardiac preload in trauma patients. J Trauma 37:950–955PubMedCrossRefGoogle Scholar
  52. 52.
    Calvin JE, Driedger AA, Sibbald WJ (1981) The hemodynamic effect of rapid fluid infusion in critically ill patients. Surgery 90:61–76PubMedGoogle Scholar
  53. 53.
    Schneider AJ, Teule GJ, Groeneveld AB, et al (1988) Biventricular performance during volume loading in patients with early septic shock, with emphasis on the right ventricle: a combined hemodynamic and radionucUde study. Am Heart J 116:103–112PubMedCrossRefGoogle Scholar
  54. 54.
    Magder S, Georgiadis G, Cheong T (1992) Respiratory variations in right atrial pressure predict the response to fluid challenge. J Crit Care 7:76–85CrossRefGoogle Scholar
  55. 55.
    Perel A (1998) Assessing fluid responsiveness by the systolic pressure variation in mechanically ventilated patients. Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89:1309–1310PubMedCrossRefGoogle Scholar
  56. 56.
    Coriat P, Vrillon M, Perel A, et al (1994) comparison of systolic blood pressure variations and echocardiographic estimates of end-diastolic left ventricular size in patients after aortic surgery. Anesth Analg 78:46–53PubMedCrossRefGoogle Scholar
  57. 57.
    Rooke GA, Schwid HA, Shapira Y (1995) The effect of graded hemorrhage and intravascular volume replacement on systolic pressure variation in humans during mechanical and spontaneous ventilation. Anesth Analg 80:925–932PubMedGoogle Scholar
  58. 58.
    Shamir M, Eidelman LA, Floman Y, et al (1999) Pulse oximetry plethysmographic waveform during changes in blood volume. Br J Anaesth 82:178–181PubMedCrossRefGoogle Scholar
  59. 59.
    Renter DA, Felbinger TW, Schmidt C, et al (2002) Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med 28:392–398CrossRefGoogle Scholar
  60. 60.
    Berkenstadt H, Margalit N, Hadani M, et al (2001) Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg 92:984–989PubMedCrossRefGoogle Scholar
  61. 61.
    Renter DA, Felbinger TW, Kilger E, et al (2002) Optimizing fluid therapy in mechanically ventilated patients after cardiac surgery by on-line monitoring of left ventricular stroke volume variations. Comparison with aortic systolic pressure variations. Br J Anaesth 88:124–126CrossRefGoogle Scholar
  62. 62.
    Pinsky MR (2002) Functional hemodynamic monitoring. Intensive Care Med 28:386–388PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • V. Piriou
  • B. Gostoli
  • D. Jacques

There are no affiliations available

Personalised recommendations