Toll-like receptor 4 in sepsis: where do we stand?

  • L. Del Sorbo
  • H. Zhang
Conference paper


Severe sepsis and septic shock remain a leading cause of death with mortality rate ranging between 35% and 60% in critically ill patients, despite aggressive antibiotic therapy and vigorous supportive treatment [1, 2]. Although some experimental approaches appeared to be successful in controlling the development of septic syndrome, only limited benefit was shown in large clinical trials [3–8]. Thus, a better understanding of the molecular mechanisms of the host immune response to microbes is fundamental to define the pathophysiology of sepsis and to guide novel therapeutic strategies.


Severe Sepsis Respiratory Syncytial Virus Tlr4 Gene TLR4 mRNA Human TLR4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brun-Buisson C (2000) The epidemiology of the systemic inflammatory response. Intensive Care Med 26:S64-S74PubMedCrossRefGoogle Scholar
  2. 2.
    Brun-Buisson C, Doyon F, Carlet J, et al (1995) Incidence, risk factors, and outcome of severe sepsis and septic shock in adults: a multicenter prospective smdy in intensive care units. JAMA 274:968–974PubMedCrossRefGoogle Scholar
  3. 3.
    Wheeler AP, Bernard GR (1999) Treatmg patients with severe sepsis. N Engl J Med 340:207–214PubMedCrossRefGoogle Scholar
  4. 4.
    Lynn WA (1998) Anti-endotoxin therapeutic options for the treatment of sepsis. J Antimicrob Chemother 41 [Suppl A]:71–80PubMedCrossRefGoogle Scholar
  5. 5.
    Read RC (1998) Experimental therapies for sepsis directed agamst tumour necrosis factor. J Antimicrob Chemother 41 [Suppl A]:65–69PubMedCrossRefGoogle Scholar
  6. 6.
    Bernard GR, Vincent JL, Laterre PF, et al (2001) Recombinant human protein C Worldwide Evaluation in Severe Sepsis (PROWESS) study group. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344:699–709PubMedCrossRefGoogle Scholar
  7. 7.
    Rivers E, Nguyen B, Havstad S, et al (2001) The Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377PubMedCrossRefGoogle Scholar
  8. 8.
    Opal SM, Cross AS (1999) Clinical trials for severe sepsis. Past failures, and future hopes. Infect Dis Clin North Am 13:285–297PubMedCrossRefGoogle Scholar
  9. 9.
    Medzhitov R, Janeway CA Jr (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296:298–300PubMedCrossRefGoogle Scholar
  10. 10.
    Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216PubMedCrossRefGoogle Scholar
  11. 11.
    Kimbrell DA, Beutler B (2001) The evolution and genetics of innate immunity. Nat Rev Genet 2:256–267PubMedCrossRefGoogle Scholar
  12. 12.
    Aderem A, Ulevitch RJ (2000) Toll-like receptors in the induction of the innate immune response. Nature 406:782–787PubMedCrossRefGoogle Scholar
  13. 13.
    Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in irmnunology. Cold Sprmg Harb Symp Quant Biol 54:1–13CrossRefGoogle Scholar
  14. 14.
    Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145PubMedCrossRefGoogle Scholar
  15. 15.
    Janeway CA Jr (1992) The immune system evolved to discriminate infectious nonself from noninfectious self. Immnunol Today 13:11–16CrossRefGoogle Scholar
  16. 16.
    Bone RC (1991) Gram-negative sepsis. Background, clmical features, and intervention. Chest 100:802–808PubMedCrossRefGoogle Scholar
  17. 17.
    Wright SD, Ramos RA, Tobias PS, et al (1990) CD14, a receptor for complexes of lipopolysac- charide (LPS) and LPS binding protein. Science 249:1431–1433PubMedCrossRefGoogle Scholar
  18. 18.
    Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397PubMedCrossRefGoogle Scholar
  19. 19.
    Rock FL, Hardiman G, Timans JC, et al (1998) A family of human receptors structurally related Ito Drosophila Toll. Proc Natl Acad Sci U S A 95:588–593PubMedCrossRefGoogle Scholar
  20. 20.
    Bowie A, O’Neill LA (2000) The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products. J Leukoc Biol 67:508–514PubMedGoogle Scholar
  21. 21.
    Chaudhary PM, Ferguson C, Nguyen V, et al (1998) Cloning and characterization of two Toll/Interleukin-1 receptor-like genes TIL3 and TIL4: evidence for a multi-gene receptor family in humans. Blood 91:4020–4027PubMedGoogle Scholar
  22. 22.
    Takeuchi O, Kawai T, Sanjo H, et al (1999) TLR6: a novel member of an expanding toll-hke receptor family. Gene 231:59–65PubMedCrossRefGoogle Scholar
  23. 23.
    Hayashi F, Smith KD, Ozinsky A, et al (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103PubMedCrossRefGoogle Scholar
  24. 24.
    Hemmi H, Takeuchi O, Kawai T, et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745PubMedCrossRefGoogle Scholar
  25. 25.
    Du X, Poltorak A, Wei Y, et al (2000) Three novel mammahan Toll-like receptors: gene structure, expression, and evolution. Eur Cytokine Net 11:32–371Google Scholar
  26. 26.
    Chuang T, Ulevitch RJ (2001) Identification of hTLR10: a novel human Toll-like receptor preferentially expressed in immune cells. Biochim Biophys Acta 1518:157–161PubMedCrossRefGoogle Scholar
  27. 27.
    Underbill DM, Ozinsky A (2002) Toll-like receptors: key mediators of microbe detection. Curr Opin Immunol 14:103–110CrossRefGoogle Scholar
  28. 28.
    Zarember KA, Godowski PJ (2002) Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol 168:554–561PubMedGoogle Scholar
  29. 29.
    Faure E, Thomas L, Xu H, et al (2001) Bacterial lipopolysaccharide and IFN-gamma induce Toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells: role of NF-kappa B activation. J Immunol 166:2018–2024PubMedGoogle Scholar
  30. 30.
    Frantz S, Kobzik L, Kim YD, et al (1999) Toll4 (TLR4) expression in cardiac myocytes in normal and faihng myocardium. J Clin Invest 104:271–280PubMedCrossRefGoogle Scholar
  31. 31.
    Wolfs TG, Buurman WA, Schadewijk A van, et al (2002) In vivo expression of Toll-like receptor 2 and 4 by renal epithelial cells: IFN-gamma and TNF-alpha mediated up-regulation during inflammation. J Immunol 168:1286–1293PubMedGoogle Scholar
  32. 32.
    Fan J, Kapus A, Marsden PA, et al (2002) Regulation of Toll-hke receptor 4 expression in the lung following hemorrhagic shock and lipopolysaccharide. J Immunol 168:5252–5259PubMedGoogle Scholar
  33. 33.
    Cario E, Rosenberg IM, Brandwein SL, et al (2000) Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol 164:966–972PubMedGoogle Scholar
  34. 34.
    Poltorak A, He X, Smimova I, et al (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088PubMedCrossRefGoogle Scholar
  35. 35.
    Qureshi ST, Lariviere L, Leveque G, et al (1999) Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tk4). J Exp Med 189:615–625PubMedCrossRefGoogle Scholar
  36. 36.
    Hoshino K, Takeuchi O, Kawai T, et al (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162:3749–3752PubMedGoogle Scholar
  37. 37.
    Lien E, Means TK, Heine H, et al (2000) Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J Clin Invest 105:497–504PubMedCrossRefGoogle Scholar
  38. 38.
    Poltorak A, Ricciardi-Castagnoli P, Citterio S, et al (2000) Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation. Proc Natl Acad Sci U S A 97:2163–2167PubMedCrossRefGoogle Scholar
  39. 39.
    Shimazu R, Akashi S, Ogata H, et al (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189:1777–1782PubMedCrossRefGoogle Scholar
  40. 40.
    Nagai Y, Akashi S, Nagafuku M, et al (2002) Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 3:667–672PubMedGoogle Scholar
  41. 41.
    Miyake K, Yamashita Y, Ogata M, et al (1995) RP 105, a novel B cell surface molecule imphcated in B cell activation, is a member of the leucine-rich repeat protein family. J Immunol 154:3333–3340PubMedGoogle Scholar
  42. 42.
    Chan VW, Mecklenbrauker I, Su I, et al (1998) The molecular mechanism of B cell activation by toll-like receptor protein RP-105. J Exp Med 188:93–101PubMedCrossRefGoogle Scholar
  43. 43.
    Miyake K, Shimazu R, Kondo J, et al (1998) Mouse MD-1, a molecule that is physically associated with RP105 and positively regulates its expression. J Immunol 161:1348–1353PubMedGoogle Scholar
  44. 44.
    Ogata H, Su I, Miyake K, et al (2000) The toll-like receptor protein RP105 regulates lipopoly- saccharide signaling in B cells. J Exp Med 192:23–29PubMedCrossRefGoogle Scholar
  45. 45.
    Kawasaki K, Akashi S, Shimazu R, et al (2000) Mouse toll-like receptor 4.MD-2 complex mediates lipopolysaccharide-mimetic signal transduction by Taxol. J Biol Chem 275:2251–2254PubMedCrossRefGoogle Scholar
  46. 46.
    Kawasaki K, Gomi K, Nishijima M (2001) Cutting edge: Gln22 of mouse MD-2 is essential for species-specific lipopolysaccharide mimetic action of taxol. J Immunol 166:11–14PubMedGoogle Scholar
  47. 47.
    Kurt-Jones EA, Popova L, Kwinn L, et al (2000) Pattern recognition receptors TLR4 and CD 14 mediate response to respiratory syncytial virus. Nat Immunol 1:398–401PubMedCrossRefGoogle Scholar
  48. 48.
    Ohashi K, Burkart V, Flohe S, et al (2000) Cutting edge: heat shock protein 60 is a putative endogenous Hgand of the toll-like receptor-4 complex. J Immunol 164:558–561PubMedGoogle Scholar
  49. 49.
    Okamura Y, Watari M, Jerud ES, et al (2001) The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 276:10229–10233PubMedCrossRefGoogle Scholar
  50. 50.
    Muzio M, Ni J, Feng P et al (1997) IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278:1612–1615PubMedCrossRefGoogle Scholar
  51. 51.
    Medzhitov R, Preston-Hurlburt P, Kopp E, et al (1998) MyD88 is an adaptor protein in the hToll/IL-1 receptor family signahng pathways. Mol Cell 2:253–258PubMedCrossRefGoogle Scholar
  52. 52.
    Wesche H, Henzel WJ, Shillinglaw W, et al (1997) MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7:837–847PubMedCrossRefGoogle Scholar
  53. 53.
    Burns K, Martinon F, Esshnger C, et al (1998) MyD88, an adapter protein involved in interleukin-1 signaling. J Biol Chem 273:12203–12209PubMedCrossRefGoogle Scholar
  54. 54.
    Bums K, Clatworthy J, Martin L, et al (2000) Tollip, a new component of the IL-IRJ pathway, links IRAK to the IL-1 receptor. Nat Cell Biol 2:346–351CrossRefGoogle Scholar
  55. 55.
    Cao Z, Henzel WJ, Gao X (1996) IRAK: a kinase associated with the interleukin-1 receptor. Science 271:1128–1131PubMedCrossRefGoogle Scholar
  56. 56.
    Wang C, Deng L, Hong M, et al (2001) TAKI is a ubiquitin-dependent kinase of MKK and IKK. Namre 412:346–351Google Scholar
  57. 57.
    Lomaga MA, Yeh WC, Sarosi I, et al (1999) TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signahng. Genes Dev 13:1015–1024PubMedCrossRefGoogle Scholar
  58. 58.
    Adachi O, Kawai T, Takeda K, et al (1998) Targeted disruption of the MyD88 gene resuhs in loss of IL-1- and IL-18-mediated function. Immunity 9:143–150PubMedCrossRefGoogle Scholar
  59. 59.
    Kawai T, Adachi O, Ogawa T, et al (1999) Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11:115–122PubMedCrossRefGoogle Scholar
  60. 60.
    Horng T, Barton GM, Medzhitov R (2001) TIRAP: an adapter molecule in the Toll signaling pathway. Nat Immunol 2:835–841PubMedCrossRefGoogle Scholar
  61. 61.
    Kaisho T, Takeuchi O, Kawai T, et al (2001) Endotoxin-induced maturation of MyD88-deficient dendritic cells. J Immunol 166:5688–5694PubMedGoogle Scholar
  62. 62.
    Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252PubMedCrossRefGoogle Scholar
  63. 63.
    Schnare M, Barton GM, Holt AC, et al (2001) Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2:947–950PubMedCrossRefGoogle Scholar
  64. 64.
    Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680PubMedCrossRefGoogle Scholar
  65. 65.
    Barton GM, Medzhitov R (2002) Control of adaptive immune responses by Toll-like receptors. Curr Opin Immunol 14:380–383PubMedCrossRefGoogle Scholar
  66. 66.
    Zhang G, Ghosh S (2001) Toll-like receptor-mediated NF-kB activation: a phylogenetically conserved paradigm in innate immunity. J Clin Invest 107:13–19PubMedCrossRefGoogle Scholar
  67. 67.
    Christman JW, Lancaster LH, Blackwell TS (1998) Nuclear factor kappa B: a pivotal role in the systemic inflammatory response syndrome and new target for therapy. Intensive Care Med 24:1131–1138PubMedCrossRefGoogle Scholar
  68. 68.
    Bohrer H, Qiu F, Zimmermann T, et al (1997) Role of NFkappaB in the mortahty of sepsis. J Clin Invest 100:972–985PubMedCrossRefGoogle Scholar
  69. 69.
    Schwartz MD, Moore EE, Moore FA, et al (1996) Nuclear factor-kappa B is activated in alveolar macrophages from patients with acute respiratory distress syndrome. Crit Care Med 24:1285-1292CrossRefGoogle Scholar
  70. 70.
    O’Neill LA, Greene C (1998) Signal transduction pathways activated by the IL-1 receptor family: ancient signaling machinery in mammals, insects, and plants. J Leukoc Biol 63:650–657PubMedGoogle Scholar
  71. 71.
    Clark GJ, Angel N, Kato M, et al (2000) The role of dendritic cells in the innate inunune system. Microbes Infect 2:257–272PubMedCrossRefGoogle Scholar
  72. 72.
    Laflamme N, Rivest S (2001) Toll-like receptor 4: the missmg link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J 15:155–163PubMedCrossRefGoogle Scholar
  73. 73.
    Matsumura T, Ito A, Takii T, et al (2000) Endotoxin and cytokine regulation of toll-like receptor (TLR) 2 and TLR4 gene expression in murine liver and hepatocytes. J Interferon Cytokine Res 20:915–921PubMedCrossRefGoogle Scholar
  74. 74.
    Baumgarten G, Knuefermann P, Nozaki N, et al (2001) In vivo expression of proinflammatory mediators in the adult heart after endotoxin administration: the role of toll-like receptor-4. J Infect Dis 183:1617–1624PubMedCrossRefGoogle Scholar
  75. 75.
    Nemoto S, Vallejo JG, Knuefermann P, et al (2002) Escherichia coli LPS-induced LV dysfunction: role of toll-like receptor-4 in the adult heart. Am J Physiol Heart Circ Physiol 282:H2316–2323PubMedGoogle Scholar
  76. 76.
    Arbour NC, Lorenz E, Schutte BC, et al (2000) TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 25:187–191PubMedCrossRefGoogle Scholar
  77. 77.
    Lorenz E, Mira JP, Frees KL, et al (2002) Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med 162:1028–1032PubMedCrossRefGoogle Scholar
  78. 78.
    Hagberg L, Briles DE, Eden CS (1985) Evidence for separate genetic defects in C3H/HeJ and C3HeB/FeJ mice that affect susceptibility to gram-negative infections. J Immunol 134:4118–4122PubMedGoogle Scholar
  79. 79.
    Opal SM, Huber CE (2002) Bench-to-bedside review: Toll-like receptors and their role in septic shock. Crit Care 6:125–136PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • L. Del Sorbo
  • H. Zhang

There are no affiliations available

Personalised recommendations