Recent advances in mechanisms of action of general anaesthetics from genetically engineered animal models

  • G. E. Homanics
Conference paper


Despite the use of general anaesthetics for well over a century, a mechanism(s) of action of these drugs on the nervous system that explains their behavioural effects has yet to be elucidated. What is the molecular site(s) and mechanism(s) of action of anaesthetics in the brain that cause amnesia and block response to painful stimuli? An understanding of this mechanism(s) could ultimately lead to improved anaesthetics with fewer side effects. In addition, understanding how these widely used drugs interfere with neuronal function may also lead to novel insight into many physiological and pathophysiological processes.


GABAA Receptor General Anaesthetic Glycine Receptor Angelman Syndrome Knockin Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miller KW (1986) Are lipids or proteins the target of general anesthetic action? Trends Neurosci 9: 49–51CrossRefGoogle Scholar
  2. 2.
    Mihic SJ, Ye Q, Wick MJ, et al (1997) Molecular sites of volatile anesthetic action on GABAA and glycine receptors. Nature 389: 385–389PubMedCrossRefGoogle Scholar
  3. 3.
    Quinlan JJ, Ferguson C, Jester K, et al (2002) Mice with glycine receptor subunit mutations are both sensitive and resistant to volatile anesthetics. Anesth Analg (in press)Google Scholar
  4. 4.
    Firestone LL, Korpi ER, Niemi L, et al (2000) Halothane and desflurane requirements in alcohol-tolerant and -nontolerant rats. Br J Anaesth 85: 757–762PubMedCrossRefGoogle Scholar
  5. 5.
    Homanics GE (2002) Knockout and knockin mice. In: Liu Y, Lovinger DM, (eds) Methods for alcohol-related neuroscience research. CRC Press, Boca Raton, pp 31–60Google Scholar
  6. 6.
    Kralic JE, Korpi ER, O’Buckley TK, et al (2002) Molecular and pharmacologic characterization of GABAa receptor alpha-1 subunit knockout mice. J Pharmacol Exp Ther (in press)Google Scholar
  7. 7.
    Vicini S, Ferguson C, Prybylowski K, et al (2001) GABAa receptor al subunit deletion prevents developmental changes of inhibitory synaptic currents in cerebellar neurons. J Neurosci 21: 3009–3016PubMedGoogle Scholar
  8. 8.
    Kralic JE, O’Buckley TK, Khisti RT, et al (2002) GABAa receptor alpha-1 subunit deletion alters benzodiazepine receptor assembly, pharmacological properties, and behavioral responses. Neuropharmacology Submitted Google Scholar
  9. 9.
    Homanics GE, Ferguson C, Quinlan JJ, et al (1997) Gene knockout of the alpha-6 subunit of the gamma-aminobutyric acid type A receptor: lack of effect on responses to ethanol, pentobarbital, and general anesthetics. Mol Pharmacol 51: 588–596PubMedGoogle Scholar
  10. 10.
    Homanics GE, Le NQ, Kist F, et al (1998) Ethanol tolerance and withdrawal responses in GABAA receptor alpha 6 subunit null allele mice and in inbred C57BL/6J and strain 129/SvJ mice. Alcohol Clin Exp Res 22: 259–265PubMedGoogle Scholar
  11. 11.
    Jones A, Korpi ER, McKeman RM, et al (1997) Ligand-gated ion channel subunit partnerships - GABA(a) receptor alpha(6) subunit gene inactivation inhibits delta subunit expression. J Neurosci 17: 1350–1362PubMedGoogle Scholar
  12. 12.
    Brickley SG, Revilla V, Cull-Candy SG, et al (2001) Adaptive regulation of neuronal excitability by a voltage- independent potassium conductance. Nature 409: 88–92PubMedCrossRefGoogle Scholar
  13. 13.
    Homanics GE, Delorey TM, Firestone LL, et al (1997) Mice devoid of g-aminobutyrate type A receptor b3 subunit have epilepsy, cleft palate, and hypersensitive behavior. Proc Natl Acad Sci U S A 94: 4143–4148PubMedCrossRefGoogle Scholar
  14. 14.
    DeLorey TM, Handforth A, Homanics GE, et al (1998) Mice lacking the b3 subunit of the GABAA receptor have the epilepsy phenotype and many of the behavioral characteristics of Angelman syndrome. J Neurosci 18: 8505–8514PubMedGoogle Scholar
  15. 15.
    Quinlan JJ, Homanics GE, Firestone LL (1998) Anesthesia sensitivity in mice lacking the b3 subunit of the GABAA receptor. Anesthesiology 88: 775–780PubMedCrossRefGoogle Scholar
  16. 16.
    Wong SME, Cheng G, Homanics GE, Kendig JJ (2001) Enflurane actions on spinal cords from mice that lack the b3 subunit of the GABAa receptor. Anesthesiology 95: 154–164PubMedCrossRefGoogle Scholar
  17. 17.
    Gunther U, Benson J, Benke D, et al (1995) Benzodiazepine-insensitive mice generated by targeted disruption of the gamma 2 subunit gene of gamma-aminobutryic acid type A receptors. Proc Natl Acad Sci U S A 92: 7749–7753PubMedCrossRefGoogle Scholar
  18. 18.
    Wafford KA, Burnett DM, Leidenheimer NJ, et al (1991) Ethanol sensitivity of the GABA-A receptor expressed in Xenopus oocytes requires 8 amino acids contained in the g2L subunit. Neuron 7: 27–33PubMedCrossRefGoogle Scholar
  19. 19.
    Homanics GE, Harrison NL, Quinlan JJ, et al (1999) Normal electrophysiological and behavioral responses to ethanol in mice lacking the long splice variant of the g2 subunit of the g-aminobutyrate type A receptor. Neuropharmacology 38: 253–265PubMedCrossRefGoogle Scholar
  20. 20.
    Wick MJ, Radcliffe RA, Bowers BJ, et al (2000) Behavioural changes produced by transgenic overexpression of gamma2L and gamma2S subunits of the GABAA receptor. Eur J Neurosci 12: 2634–2638PubMedCrossRefGoogle Scholar
  21. 21.
    Mihalek RM, Banjeree PK, Korpi E, et al (1999) Attenuated sensitivity to neuroactive steroids in GABA type A receptor delta subunit knockout mice. Proc Natl Acad Sci U S A 96: 12905–12910PubMedCrossRefGoogle Scholar
  22. 22.
    Mihalek RM, Bowers B J, Wehner JM, et al (2001) GAB Aa-receptor delta subunit knockout mice have multiple defects in behavioral responses to ethanol. Alcohol Clin Exp Res 25: 1708–1718PubMedGoogle Scholar
  23. 23.
    Peng Z, Hauer B, Mihalek RM, et al (2002) GABAA receptor changes in delta subunit-deficient mice: altered expression of alpha-4 and gamma-2 subunits in forebrain. J Comp Neurol 446: 179–197PubMedCrossRefGoogle Scholar
  24. 24.
    Tretter V, Hauer B, Nusser Z, et al (2001) Targeted disruption of the GABAa receptor delta subunit gene leads to an upregulation of gamma2 subunit-containing receptors in cerebellar granule cells. J Biol Chem 276: 10532–10538PubMedCrossRefGoogle Scholar
  25. 25.
    Wieland HA, Luddens H, Seeburg PH (1992) A single histidine in GABAA receptors is essential for benzodiazepine agonist binding. J Biol Chem 267: 1426–1429PubMedGoogle Scholar
  26. 26.
    Rudolph U, Crestani F, Benke D, et al (1999) Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. Nature 401: 796–800PubMedCrossRefGoogle Scholar
  27. 27.
    McKeman RM, Rosahl TW, Reynolds DS, et al (2000) Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABA(A) receptor alphai subtype. Nat Neurosci 3: 587–592CrossRefGoogle Scholar
  28. 28.
    Low K, Crestani F, Keist R, et al (2000) Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290: 131–134PubMedCrossRefGoogle Scholar
  29. 29.
    Crestani F, Keist R, Fritschy JM, et al (2002) Trace fear conditioning involves hippocampal alpha5 GABA(A) receptors. Proc Natl Acad Sci U S A 99: 8980–8985PubMedCrossRefGoogle Scholar
  30. 30.
    Crestani F, Low K, Keist R, et al (2001) Molecular targets for the myorelaxant action of diazepam. Mol Pharmacol 59: 442–445PubMedGoogle Scholar
  31. 31.
    Sur C, Wafford KA, Reynolds DS, et al (2001) Loss of the major GABAA receptor subtype in the brain is not lethal in mice. J Neurosci 21: 3409–3418PubMedGoogle Scholar
  32. 32.
    Collinson N, Kuenzi FM, Jarolimek W, et al (2002) Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the alpha 5 subunit of the GABAA receptor. J Neurosci 22: 5572–5580PubMedGoogle Scholar
  33. 33.
    Korpi ER, Koikkalainen P, Vekovischeva OY, et al (1999) Cerebellar granule-cell-specific GABAA receptors attenuate benzodiazepine-induced ataxia: evidence from alpha 6-subunit-de- ficient mice. Eur J Neurosci 11: 233–240PubMedCrossRefGoogle Scholar
  34. 34.
    Laposky AD, Homanics GE, Basile A, Mendelson WB (2001) Deletion of the GABAa receptor b3 subunit eliminates the hypnotic actions of oleamide in mice. Neuroreport 12: 4143–4147PubMedCrossRefGoogle Scholar
  35. 35.
    Ugarte SD, Homanics GE, Firestone LL, Hammond DL (2000) Sensory thresholds and the antinociceptive effects of GABA receptor agonists in mice lackmg the b3 subunit of the GABAa receptor. Neuroscience 95: 795–806PubMedCrossRefGoogle Scholar
  36. 36.
    Resnick A, Homanics GE, Jung B, Peris J (1999) Increased acute cocaine sensitivity and decreased cocaine sensitization in GABAa b3 subunit knockout mice. J Neurochem 73: 1539- -1548PubMedCrossRefGoogle Scholar
  37. 37.
    Quinlan JJ, Firestone LL, Homanics GE (2000) Mice lacking the long splice variant of the g2 subunit of the GABAa receptor are more sensitive to benzodiazepines. Pharm Biochem Behav 66: 371–374CrossRefGoogle Scholar
  38. 38.
    McCall MA, Lukasiewicz PD, Gregg RG, Peachey NS (2002) Elimination of the rhol subunit abolishes GABA(C) receptor expression and alters visual processing in the mouse retina. J Neurosci 22: 4163–4174PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • G. E. Homanics

There are no affiliations available

Personalised recommendations