Cardiovascular integrated monitoring

  • J. O. C. Auler
  • L. F. Poli de Figueiredo
  • M. Rezende Lopes
Conference paper


The management of the perioperative patient is frequently based on continual monitoring of cardiovascular status. Various invasive and noninvasive devices have been used to monitor cardiovascular status during this period, to provide the anaesthesiologist with indexes of cardiovascular function, to assist in therapeutic decision making. In this chapter our intention is to review the widely used instruments to assess cardiovascular function. Due to our daily involvement with a busy and large operating room and intensive care unit (ICU) dedicated to cardiovascular surgery, we will focus our chapter mainly on this kind of situation.


Stroke Volume Pulmonary Artery Catheter Fluid Responsiveness Fluid Challenge Pulmonary Artery Occlusion Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Connors AF Jr, Speroff T, Dawson NV, et al (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA 276:889–897PubMedCrossRefGoogle Scholar
  2. 2.
    Iberti TJ, Fischer EP, Leibowitz AB, et al (1990) A multicenter study of physicians knowledge of the pulmonary artery catheter. Pulmonary Artery Study Group. JAMA 264:2928–2932PubMedCrossRefGoogle Scholar
  3. 3.
    O’Quin R, Marini JJ (1983) Pulmonary artery occlusion pressure: clinical physiology, measurement, and interpretation. Am Rev Respir Dis 128:319–326PubMedGoogle Scholar
  4. 4.
    Morris AH, Chapman RH, Gardner RM (1984) Frequency of technical problems encountered in the measurement of pulmonary artery wedge pressure. Crit Care Med 12:164–170PubMedCrossRefGoogle Scholar
  5. 5.
    Marik PE (1999) Pulmonary artery catheterization and esophageal Doppler monitoring in the ICU. Chest 116:1085–1091PubMedCrossRefGoogle Scholar
  6. 6.
    Godje O, Peyerl M, Seebauer T, et al (1998) Central venous pressure, pulmonary capillary wedge pressure and intrathoracic blood volumes as preload indicators in cardiac surgery patients. Eur J Cardiothorac Surg 13:533–539PubMedCrossRefGoogle Scholar
  7. 7.
    Pinsky MR, Vincent JL, De Smet JM (1991) Estimating left ventricular filling pressure during positive end-expiratory pressure in humans. Am Rev Respir Dis 143:25–31PubMedCrossRefGoogle Scholar
  8. 8.
    Marik PE, Heard SO, Varon J (1998) Interpretation of the pulmonary artery occlusion (wedge) pressure: physician’s knowledge versus the experts’ knowledge. Crit Care Med 26:1761–1764PubMedCrossRefGoogle Scholar
  9. 9.
    Michard F, Teboul JL (2000) Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care 4:282–289PubMedCrossRefGoogle Scholar
  10. 10.
    Boldt J, Lenz M, Kumle B, et al (1998) Volume replacement strategies on intensive care units: results from a postal survey. Intensive Care Med 24:147–151PubMedCrossRefGoogle Scholar
  11. 11.
    Stetz CW, Miller RG, Kelly GE, et al (1982) Reliabüity of the thermodilution method in the determination of cardiac output in clinical practice. Am Rev Respir Dis 126:1001–1004PubMedGoogle Scholar
  12. 12.
    Poli de Figueiredo LP, Malbouisson LM, Varicoda EY, et al (1999) Thermal filament continuous thermodilution cardiac output delayed response limits its value during acute hemodynamic instability. J Trauma 47:288–293CrossRefGoogle Scholar
  13. 13.
    Wagner GJ, Leatherman JW (1998) Right ventricular end-diastolic volume as a predictor of the hemodynamic response to a fluid challenge. Chest 113:1048–1054PubMedCrossRefGoogle Scholar
  14. 14.
    Diebel NL, Wilson RF, Tagett MG, et al (1992) End-diastolic volume. A better indicator of preload in the critically ill. Arch Surg 127:817–822PubMedCrossRefGoogle Scholar
  15. 15.
    Feinberg MS, Hopkins WE, Davila-Roman VG, et al (1995) Multiplane transesophageal echocardiographic Doppler imaging accurately determines cardiac output measurements in critically ill patients. Chest 107:769–773PubMedCrossRefGoogle Scholar
  16. 16.
    Valtier B, Cholley BP, Belot JP, et al (1998) Noninvasive monitoring of cardiac output in critically ill patients using transesophageal Doppler. Am J Respir Crit Care Med 158:77–83PubMedCrossRefGoogle Scholar
  17. 17.
    Sinclair S, James S, Singer M (1997) Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomized controlled trial. BMJ 315:909–912PubMedCrossRefGoogle Scholar
  18. 18.
    Singer M (1993) Esophageal Doppler monitoring of aortic blood flow: beat-by-beat cardiac output monitoring. Int Anesthesiol Clin 31:99–125PubMedCrossRefGoogle Scholar
  19. 19.
    Gan TJ, Arrowsmith JE (1997) The oesophageal Doppler monitor. BMJ 315:893–894PubMedCrossRefGoogle Scholar
  20. 20.
    Singer M, Bennett ED (1991) Noninvasive optimization of left ventricular filling by esophageal Doppler. Crit Care Med 19:1132–1137PubMedCrossRefGoogle Scholar
  21. 21.
    Schmid ER, Spahn DR, Tomic M (1993) Reliability of a new generation transesophageal Doppler device for cardiac output monitoring. Anesth Analg;77:971–979PubMedCrossRefGoogle Scholar
  22. 22.
    DiCorte CJ, Latham P, Greihch PE, et al (2000) Esophageal Doppler monitor determinations of cardiac output and preload during cardiac operations. Ann Thorac Surg 69:1782–1786CrossRefGoogle Scholar
  23. 23.
    Tousignant CP, Walsh F, Mazer CD (2000) The use of the transesophageal echocardiography for preload assessment in critically ill patients. Anesth Analg 90:351–355PubMedGoogle Scholar
  24. 24.
    Fontes ML, Bellows W, Ngo L, et al (1999) Assessment of ventricular function in critically ill patients: limitations of pulmonary artery catheterization. J Cardiothorac Vase Anesth 13:521–527CrossRefGoogle Scholar
  25. 25.
    Jacka MJ, Cohen MM, To T, et al (2002) The use of and preferences for the transesophageal echocardiogram and pulmonary artery catheter among cardiovascular anesthesiologists. Anesth Analg 94:1065–1071PubMedCrossRefGoogle Scholar
  26. 26.
    Cheung AT, Savino JS, Weiss SJ, et al (1994) Echocardiographic and hemodynamic indexes of left ventricular preload in patients with normal and abnormal ventricular function. Anesthesiology 81:376–387.PubMedCrossRefGoogle Scholar
  27. 27.
    Tarvenier B, Makhotine O, Lebuffe G, et al (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis induced hypotension. Anesthesiology 89:1313–1321CrossRefGoogle Scholar
  28. 28.
    Lattik R, Couture P, Denault A, et al (2002) Mitral Doppler indices are superior to two dimensional echocardiography and hemodynamic variables in predicting responsiveness of cardiac output to a rapid intravenous infusion of colloid. Anesth Analg 94:1092–1099PubMedCrossRefGoogle Scholar
  29. 29.
    Shanewise JS, Cheung AT, Aronson S, et al (1999) ASA/SCA guidelines for performing a comprehensive multiplane transesophageal echocardiography examination. Anesth Analg 89:870–884PubMedGoogle Scholar
  30. 30.
    Pinsky MR (2002) Functional hemodynamic monitoring. Intensive Care Med 28:386–388PubMedCrossRefGoogle Scholar
  31. 31.
    Permutt S, Wise RA, Brower RG (1989) How changes in pleural pressure and alveolar pressure cause changes in afterload and preload. In: Sharf SM, Cassidy S (ed) Heart-lung interactions in health and disease. Dekker, New York, pp 243–250Google Scholar
  32. 32.
    Brower R, Wise RA, Hassapoyannes C, et al (1985) Effects of lung inflation on lung blood volume and pulmonary venous flow. J Appl Physiol 58:954–963PubMedCrossRefGoogle Scholar
  33. 33.
    Pinsky MR, Matuschak GM, Klain M (1985) Determinants of cardiac augmentation by elevations in intrathoracic pressure. J Appl Physiol 58:1189–1198PubMedGoogle Scholar
  34. 34.
    Perel A, Pizov R, Colev S (1987) Systolic pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology 67:498–502PubMedCrossRefGoogle Scholar
  35. 35.
    Pizov R, Yaari Y, Perel A (1989) The arterial pressure wave form during acute ventricular failure and synchronized external chest compression. Anesth Analg 68:150–156PubMedCrossRefGoogle Scholar
  36. 36.
    Szold A, Pizov R, Segal E, et al (1989) The effect of tidal volume and intravascular volume state on systolic pressure variation in ventilated dogs. Intensive Care Med 15:368–371PubMedCrossRefGoogle Scholar
  37. 37.
    Denault AY, Gasior TA, Gorcsan J, et al (2000) Determinants of aortic pressure variation during positive-pressure ventilation in man. Chest 116:176–186CrossRefGoogle Scholar
  38. 38.
    Michard F, Chemla D, Richard C, et al (1999) Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effects of PEEP. Am J Respir Crit Care Med 159:935–939PubMedCrossRefGoogle Scholar
  39. 39.
    Michard F, Boussat S, Chemla D, et al (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • J. O. C. Auler
  • L. F. Poli de Figueiredo
  • M. Rezende Lopes

There are no affiliations available

Personalised recommendations