Mapping cerebral metabolic and blood flow effects of general anaesthetics

  • U. Freo
  • C. Ori
Conference paper


A central research problem in pharmacology has been identification of the mechanism(s) and site(s) of action of general anaesthetics within the central nervous system. Ideally, a method to investigate the effects of general anaesthetics should provide information on the functional changes occurring in neuronal cells during the anaesthetic state. Electrical activity of the primary neuronal function can not be easily mapped but drives neuronal metabolic activities. Specifically, under normal conditions glucose is almost the exclusive substrate for neuronal energetic requirements and is a major factor that regulates cerebral blood flow; hence, determination of regional cerebral metabolic rates for glucose (rCMRglc) and regional blood flow (rCBF) provide two surrogate measures of neuronal functional activities. In the late 1970s were introduced the [14C] 2-deoxy-d-glucose [1] and [14C] iodoantipyrine [2] autoradiographic techniques for the measurement of rCMRglc and rCBF in animals. Deoxyglucose is an analogue of glucose that is taken up at a fixed ratio with glucose, trapped into the neuronal cells, and not further metabolized [1]; antipyrine is a highly diffusible molecule that freely crosses the bloodbrain barrier and distributes according to blood flow [2]. Brain concentrations of both [14C] 2-deoxy-D-glucose and [14C] iodoantipyrine are hence markers of rCMRglc and rCBF and can then be determined autoradiographically.


Positron Emission Tomography Cerebral Blood Flow Positron Emission Tomography Study Regional Cerebral Blood Flow Minimum Alveolar Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sokoloff L, Reivich M, Kennedy C, et al (1977) The [14CJdeoxyglucose method for the measurement of local cerebral glucose utilization. Theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916PubMedCrossRefGoogle Scholar
  2. 2.
    Sakurada O, Kennedy C, Jehle J, et al (1978) Measurements of local cerebral blood flow with iodo[i^C]antipyrine. Am J Physiol 234:H59-H66PubMedGoogle Scholar
  3. 3.
    Aine JC (1995) A conceptual overview and critique of functional neuroimaging techniques in humans: 1. MRI/fMRI and PET. Crit Rev Neurobiol 9:229–309PubMedGoogle Scholar
  4. 4.
    Herscovitcb P, Markham J, Raichle ME (1983) Brain blood flow measured with intravenous ffisO. I. Theory and error analysis. J Nucl Med 24:782–789Google Scholar
  5. 5.
    Ogawa S, Lee TM, Kay AR, et al (1990) Brain magnetic resonance imaging with contrast dependent on blood oxigenation. Proc Natl Acad Sci U S A 87:9868–9872PubMedCrossRefGoogle Scholar
  6. 6.
    Myers RR, Shapiro HM (1979) Local cerebral metabohsm during enflurane anesthesia: identification of epileptogenic foci. Electroencephal Clin Neurophysiol 47:153–162CrossRefGoogle Scholar
  7. 7.
    Nakakimura K, Sakabe T, Funatsu N, et al (1988) Metabolic activation of intercortical and corticothalamic pathways during enflurane anesthesia in rats. Anesthesiology 68:777–782PubMedCrossRefGoogle Scholar
  8. 8.
    Crosby G, Atlas S (1988) Local spinal cord glucose utilization in conscious and halothane- -anesthetized rats. Can J Anaesth 35:359–363PubMedCrossRefGoogle Scholar
  9. 9.
    Savaki HE, Desban M, Glowinski J, et al (1983) Local cerebral glucose consumption in the rat. 1. Effects of halothane anesthesia. J Comp Neurol 213:36–45PubMedCrossRefGoogle Scholar
  10. 10.
    Ori C, Dam M, Pizzolato G, et al (1986) Effects of isoflurane anesthesia on local cerebral glucose metabolism in the rat. Anesthesiology 65:152–156PubMedCrossRefGoogle Scholar
  11. 11.
    Lenz C, Rebel A, Ackem K van, et al (1998) Local cerebral blood flow, local cerebral glucose utilization, and flow-metaboUsm coupling during sevoflurane versus isoflurane anesthesia in rats. Anesthesiology 89:1480–1488PubMedCrossRefGoogle Scholar
  12. 12.
    Maekawa T, Tommasino C, Shapiro HM, et al (1986) Local cerebral blood flow and glucose utilization during isoflurane anesthesia in the rat. Anesthesiology 65:144–151PubMedCrossRefGoogle Scholar
  13. 13.
    Hendrich KS, Kochaneck PM, Melick JA, et al (2001) Cerebral perfusion during anesthesia with fentanyl, isoflurane, or pentobarbital in normal rats studied with arterial spin-labeled MRI. Magn Reson Med 46:202–206PubMedCrossRefGoogle Scholar
  14. 14.
    Hansen TD, Warner DS, Todd MM, et al (1989) The role of cerebral metabohsm in determining the local cerebral blood flow effects of volatile anesthetics: evidence for persisting flow-meta- bohsm coupling. J Cereb Blood Flow Metab 9:323–328PubMedCrossRefGoogle Scholar
  15. 15.
    Shapiro HM, Greenberg JH, Reivich M, et al (1978) Local cerebral glucose uptake in awake and halothane-anesthetized primates. Anesthesiology 48:97–103PubMedCrossRefGoogle Scholar
  16. 16.
    Alkire MT, Haier RJ, Shah NK, et al (1997) Positron emission tomography study of regional cerebral metabolism in humans during isoflurane anesthesia. Anesthesiology 86:549–557PubMedCrossRefGoogle Scholar
  17. 17.
    Alkire MT (1998) Quantitative EEG correlations with brain glucose metabolic rate during anesthesia in volunteers. Anesthesiology 89:323–333PubMedCrossRefGoogle Scholar
  18. 18.
    Alkire MT, Pomfrett CJD, Haier RJ, et al (1999) Functional brain imaging during anesthesia in humans. Effects of halothane on global and regional cerebral glucose metabohsm. Anesthesiology 90:701–709PubMedCrossRefGoogle Scholar
  19. 19.
    Alkire MT, Haier RJ, Fallon JH (2000) Toward a unified theory of narcosis: brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness. Conscious Cogn 9:370–386PubMedCrossRefGoogle Scholar
  20. 20.
    Kaisti KK, Metsahonkala L, Teras M, et al (2002) Effects of surgical levels of propofol and sevoflurane anesthesia on cerebral blood flow in healthy subjects studied with positron emission tomography. Anesthesiology 96:1358–1370PubMedCrossRefGoogle Scholar
  21. 21.
    Kaisti KK, Jaaskelainen SK, Rinne JO, et al (1999) Epileptiform discharges during 2 MAC sevoflurane anesthesia in two healthy volunteers. Anesthesiology 91:1952–1955PubMedCrossRefGoogle Scholar
  22. 22.
    Antognini JF, Buonocore MH, Disbrow EA, et al (1997) Isoflurane anesthesia blunts cerebral responses to noxious and innocuous stimuli: a fMRI study. Life Sci 61:349–354CrossRefGoogle Scholar
  23. 23.
    Heinke W, Schwarzbauer C (2001) Subanesthetic isoflurane affects task-induced brain activation in a highly specific manner. Anesthesiology 94:973–981PubMedCrossRefGoogle Scholar
  24. 24.
    London E, Fanelli R, Szikszay M, et al (1986) Effects of opioid analgesics on local cerebral glucose utilization. NIDA Res Monograr 75:379–381Google Scholar
  25. 25.
    Cohen SR, Kimes AS, London ED (1991) Morphine decreases cerebral glucose utilization in limbic and forebrain regions while pain has no effect. Neuropharmacology 30:125–134PubMedCrossRefGoogle Scholar
  26. 26.
    Beck T, Kriegelstein J (1986) The effects of tifluadom and ketazocine on behavior, dopamine turnover in the basal ganglia and local cerebral glucose utilization in rats. Brain Res 381:327–335PubMedCrossRefGoogle Scholar
  27. 27.
    Orzi F, Passarel H F, La Riccia M, et al (1996) Intravenous morphine increases glucose utilization in the shell of the rat nucleus accumbens. Eur J Pharmacol 302:49–51PubMedCrossRefGoogle Scholar
  28. 28.
    Tommasino C, Maekawa T, Shapiro HM, et al (1984) Fentanyl-induced seizures activate subcortical brain metabohsm. Anesthesiology 60:283–290PubMedCrossRefGoogle Scholar
  29. 29.
    Kofke WA, Garman RH, Tom WC, et al (1992) Alfentanil-induced hypermetabolism, seizure, and histopathology in rat brain. Anesth Analg 75:953–964PubMedCrossRefGoogle Scholar
  30. 30.
    Kofke WA, Attaallah AF, Kuwabara H, et al (2002) The neuropathologic effects in rats and neurometabohc effects in humans of large-dose remifentanil. Anesth Analg 94:1229–1236PubMedCrossRefGoogle Scholar
  31. 31.
    Young ML, Smith DS, Greenberg J, et al (1984) Effects of sufentanil on regional cerebral glucose utilization in rats. Anesthesiology 61:564–568PubMedCrossRefGoogle Scholar
  32. 32.
    Beck T, Wenzel J, Kuschinsky K, et al (1989) Morphine-induced alterations of local cerebral glucose utilization in the basal gangha of rats. Brain Res 497:205–213PubMedCrossRefGoogle Scholar
  33. 33.
    Ableitner A (1994) Brain sites involved in delta-opioid receptor-mediated actions. Eur J Pharmacol 271:213–222PubMedCrossRefGoogle Scholar
  34. 34.
    Kraus MA, Piper JM, Kometsky C (1996) Naloxone alters the local metabolic rate for glucose in discrete bram regions associated with opiate withdrawal. Brain Res 724:33–40PubMedCrossRefGoogle Scholar
  35. 35.
    Levy RM, Fields HL, Stryker MP, et al (1986) The effect of analgesic doses of morphine on regional cerebral glucose metabohsm in pain-related structures. Brain Res 368:170–173PubMedCrossRefGoogle Scholar
  36. 36.
    Gescuk B, Lang S, Porrino LJ, et al (1994) The local cerebral metabohc effects of morphine in rats exposed to escapable footshock. Brain Res 663:303–311PubMedCrossRefGoogle Scholar
  37. 37.
    Tuor UI, Mahsza K, Foniok T, et al (2000) Functional magnetic resonance imaging in rats subjected to intense electrical and noxious chemical stimulation of the forepaw. Pain 87:315–324PubMedCrossRefGoogle Scholar
  38. 38.
    Chang C, Shyu BC (2001) A fMRI study of brain activations during non-noxious and noxious electrical stimulation of the sciatic nerve of rats. Brain Res 897:71–81PubMedCrossRefGoogle Scholar
  39. 39.
    Jones AK, Friston KJ, Qi LY, et al (1991) Sites of action of morphine in the brain (letter). Lancet 338:825PubMedCrossRefGoogle Scholar
  40. 40.
    London ED, Broussolle EP, Links JM, et al (1990) Morphine-induced metabohc changes in human brain. Studies with positron emission tomography and [18F]flurodoxyglucose. Arch Gen Psychiatry 47:73–81PubMedCrossRefGoogle Scholar
  41. 41.
    Walsh SL, Gilson SF, Jasinski DR, et al (1994) Buprenorphine reduces cerebral glucose metabohsm in poly drug abusers. Neuropsychopharmacology 10:157–170PubMedCrossRefGoogle Scholar
  42. 42.
    Schlaepfer TE, Strain EC, Greenberg BD, et al (1998) Site of opioid action in the human brain: mu and kappa agonists’ subjective and cerebral blood flow effects. Am J Psychiatry 155:470–473PubMedGoogle Scholar
  43. 43.
    Firestone LL, Gyulai F, Mintun M, et al (1996) Human brain activity response to fentanyl imaged by positron emission tomography Anesth Analg 82:1247–1251PubMedGoogle Scholar
  44. 44.
    Wagner KJ, Willoch F, Kochs EF, et al (2001) Dose-dependent regional cerebral blood flow changes during remifentanil infusion in humans. Anesthesiology 94:732–739PubMedCrossRefGoogle Scholar
  45. 45.
    Lorenz IH, Kolbitsch C, Schocke M, et al (2000) Low-dose remifentanil increases regional cerebral blood flow and regional cerebral blood volume, but decreases regional mean transit time and regional cerebrovascular resistance in volunteers. Br J Anaesth 85:199–204PubMedCrossRefGoogle Scholar
  46. 46.
    Duncan GH, Bushnell MC, Friston KJ, et al (1992) Pain and activation in the thalamus. Trends Neurosci 15:1355Google Scholar
  47. 47.
    Adler LJ, Gyulai EE, Diehl DJ, et al (1997) Regional brain activity changes associated with fentanyl analgesia elucidated by positron emission tomography Anesth Analg 84:120–126PubMedGoogle Scholar
  48. 48.
    Cole DJ, Shapiro HM (1989) Different 1.2 MAC combinations of nitrous oxide-enflurane cause unique cerebral and spinal cord metabolic responses in the rat. Anesthesiology 70:787–792PubMedCrossRefGoogle Scholar
  49. 49.
    Crosby G, Crane AM, Sokoloff L (1984) A comparison of local rates of glucose utilization in spinal cord and brain in conscious and nitrous oxide or pentobarbital-treated rats. Anesthesiology 61:434–438PubMedCrossRefGoogle Scholar
  50. 50.
    Sakabe T, Tsutsui T, Maekawa T, et al (1985) Local cerebral glucose utilization during nitrous oxide and pentobarbital anesthesia in rats. Anesthesiology 63:262–266PubMedCrossRefGoogle Scholar
  51. 51.
    Crosby G, Crane AM, Jehle J, et al (1983) The local metabohc effects of somatosensory stimulation in the central nervous system of rats given pentobarbital or nitrous oxide. Anesthesiology 58:38–43PubMedCrossRefGoogle Scholar
  52. 52.
    Gyulai EE, Firestone LL, Mintun MA, et al (1996) In vivo imaging of human limbic responses to noxious stimuli. Anesth Analg 83:291–298PubMedGoogle Scholar
  53. 53.
    Gyulai EE, Firestone LL, Mintun MA (1997) In vivo imaging of nitrous oxide-induced changes in cerebral activation during noxious heat stimuli. Anesthesiology 86:538–548.PubMedCrossRefGoogle Scholar
  54. 54.
    Ori C, Freo U, Perini G, Dam M (1995) Dissociated behavioral and regional cerebral metabolic (rCMRglc) effects of midazolam and flunitrazepam in rats. XXV Meeting of the Society for Neuroscience Abstract Book 21:157Google Scholar
  55. 55.
    Veselis RA, Reinsel RA, Beattie BJ, et al (1997) Midazolam changes cerebral blood flow in discrete brain regions: an H2(15)0 positron emission tomography study. Anesthesiology 87: 1106–1117PubMedCrossRefGoogle Scholar
  56. 56.
    Mathew RJ, Wilson WH, Daniel DG (1985) The effect of nonsedating doses of diazepam on regional cerebral blood flow. Biol Psychiatiy 20:1109–1116CrossRefGoogle Scholar
  57. 57.
    Volkow ND, Wang GJ, Hitzemann R, et al (1995) Depression of thalamic metabohsm by lorazepam is associated with sleepiness. Neuropsychopharmacology 12:123–132PubMedCrossRefGoogle Scholar
  58. 58.
    Hodes JE, Soncrant TT, Larson DM, et al (1985) Selective changes in local cerebral glucose utilization by phénobarbital in the rat. Anesthesiology 63:633–639PubMedCrossRefGoogle Scholar
  59. 59.
    Herkenham M (1981) Anesthetics and the habenulo-interpeduncolar system: selective sparing of metabohc activity. Anesthesiology 56:461–466Google Scholar
  60. 60.
    Archer DP, Froehch J, McHugh M, et al (1995) Local cerebral glucose utilization in stimulated rats sedated with thiopental. Anesthesiology 83:160–168PubMedCrossRefGoogle Scholar
  61. 61.
    Blacklock JB, Oldfield EH, Di Chiro G, et al (1987) Effect of barbiturate coma on glucose utilization in normal brain versus gliomas. Positron emission tomography studies. J Neurosurg 67:71–75PubMedCrossRefGoogle Scholar
  62. 62.
    Martin E, Thiel T, Joeri P, et al (2000) Effect of pentobarbital on visual processing in man. Hum Brain Mapp 10:132–139PubMedCrossRefGoogle Scholar
  63. 63.
    Dam M, Ori C, Pizzolato G, et al (1990) The effects of propofol anesthesia on local cerebral glucose utilization in the rat. Anesthesiology 73:499–505PubMedCrossRefGoogle Scholar
  64. 64.
    Alkire MT, Haier RJ, Barker SJ, et al (1995) Cerebral metabolism during propofol anesthesia in humans studied with positron emission tomography. Anesthesiology 82:393–403PubMedCrossRefGoogle Scholar
  65. 65.
    Eiset P, Paus T, Daloze T, et al (1999) Brain mechanism of propofol induced loss of consciousness in humans: a positron emission tomography study. J Neurosci 19:5506–5513Google Scholar
  66. 66.
    Bonhomme V, Eiset P, Meuret P, et al (2001) Propofol anesthesia and cerebral blood flow changes elicited by vibrotactile stimulation: a positron emission tomography study. J Neurophysiol 85: 1299–1308PubMedGoogle Scholar
  67. 67.
    Eintrei C, Sokoloff L, Smith CB (1999) Effects of diazepam and ketamine administered individually or in combination on regional rates of glucose utilization in rat brain. Br J Anaesth 82:596–602PubMedCrossRefGoogle Scholar
  68. 68.
    Davis DW, Mans AM, Biebuyck JF, et al (1988) The influence of ketamine on regional brain glucose use. Anesthesiology 69:199–205PubMedCrossRefGoogle Scholar
  69. 69.
    Burdett NG, Menon DK, Carpenter TA, et al (1995) Visualisation of changes in regional cerebral blood flow (rCBF) produced by ketamine using long TE gradient-echo sequences: preliminary results. Magn Reson Imaging 13:549–553PubMedCrossRefGoogle Scholar
  70. 70.
    Ori C, Freo U, Merico A et al (1999) Effects of recovery from anesthesia with ketamine racemic mixture and stereoisomers on local cerebral glucose utilization (LCGU) in rat. XXIX Meetmg of the Society for Neuroscience 25:536Google Scholar
  71. 71.
    Breier A, Malhotra AK, Finals DA, et al (1997) Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers. Am J Psychiatry 154:805–811PubMedGoogle Scholar
  72. 72.
    Holcomb HH, Lahti AC, Medoff DR, et al (2001) Sequential regional cerebral blood flow brain scans using PET with H2(15)0 demonstrate ketamine actions in CNS dynamically. Neuropsychopharmacology 25:165–172PubMedCrossRefGoogle Scholar
  73. 73.
    Lahti AC, Holcomb HH, Medoff DR, et al (1995) Ketamine activates psychosis and alters limbic blood flow in schizophrenia. Neuroreport 6:869–872PubMedCrossRefGoogle Scholar
  74. 74.
    Vollen weider FX, Leenders KL, Oye I (1997) Differential psychopathology and patterns of cerebral glucose utilisation produced by (S)- and (R)-ketamine in healthy volunteers using positron emission tomography (PET). Eur Neuropsychopharmacol 7:25–38CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • U. Freo
  • C. Ori

There are no affiliations available

Personalised recommendations