Skip to main content

Mapping cerebral metabolic and blood flow effects of general anaesthetics

  • Conference paper
Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.

Abstract

A central research problem in pharmacology has been identification of the mechanism(s) and site(s) of action of general anaesthetics within the central nervous system. Ideally, a method to investigate the effects of general anaesthetics should provide information on the functional changes occurring in neuronal cells during the anaesthetic state. Electrical activity of the primary neuronal function can not be easily mapped but drives neuronal metabolic activities. Specifically, under normal conditions glucose is almost the exclusive substrate for neuronal energetic requirements and is a major factor that regulates cerebral blood flow; hence, determination of regional cerebral metabolic rates for glucose (rCMRglc) and regional blood flow (rCBF) provide two surrogate measures of neuronal functional activities. In the late 1970s were introduced the [14C] 2-deoxy-d-glucose [1] and [14C] iodoantipyrine [2] autoradiographic techniques for the measurement of rCMRglc and rCBF in animals. Deoxyglucose is an analogue of glucose that is taken up at a fixed ratio with glucose, trapped into the neuronal cells, and not further metabolized [1]; antipyrine is a highly diffusible molecule that freely crosses the bloodbrain barrier and distributes according to blood flow [2]. Brain concentrations of both [14C] 2-deoxy-D-glucose and [14C] iodoantipyrine are hence markers of rCMRglc and rCBF and can then be determined autoradiographically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sokoloff L, Reivich M, Kennedy C, et al (1977) The [14CJdeoxyglucose method for the measurement of local cerebral glucose utilization. Theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  PubMed  CAS  Google Scholar 

  2. Sakurada O, Kennedy C, Jehle J, et al (1978) Measurements of local cerebral blood flow with iodo[i^C]antipyrine. Am J Physiol 234:H59-H66

    PubMed  CAS  Google Scholar 

  3. Aine JC (1995) A conceptual overview and critique of functional neuroimaging techniques in humans: 1. MRI/fMRI and PET. Crit Rev Neurobiol 9:229–309

    PubMed  CAS  Google Scholar 

  4. Herscovitcb P, Markham J, Raichle ME (1983) Brain blood flow measured with intravenous ffisO. I. Theory and error analysis. J Nucl Med 24:782–789

    Google Scholar 

  5. Ogawa S, Lee TM, Kay AR, et al (1990) Brain magnetic resonance imaging with contrast dependent on blood oxigenation. Proc Natl Acad Sci U S A 87:9868–9872

    Article  PubMed  CAS  Google Scholar 

  6. Myers RR, Shapiro HM (1979) Local cerebral metabohsm during enflurane anesthesia: identification of epileptogenic foci. Electroencephal Clin Neurophysiol 47:153–162

    Article  CAS  Google Scholar 

  7. Nakakimura K, Sakabe T, Funatsu N, et al (1988) Metabolic activation of intercortical and corticothalamic pathways during enflurane anesthesia in rats. Anesthesiology 68:777–782

    Article  PubMed  CAS  Google Scholar 

  8. Crosby G, Atlas S (1988) Local spinal cord glucose utilization in conscious and halothane- -anesthetized rats. Can J Anaesth 35:359–363

    Article  PubMed  CAS  Google Scholar 

  9. Savaki HE, Desban M, Glowinski J, et al (1983) Local cerebral glucose consumption in the rat. 1. Effects of halothane anesthesia. J Comp Neurol 213:36–45

    Article  PubMed  CAS  Google Scholar 

  10. Ori C, Dam M, Pizzolato G, et al (1986) Effects of isoflurane anesthesia on local cerebral glucose metabolism in the rat. Anesthesiology 65:152–156

    Article  PubMed  CAS  Google Scholar 

  11. Lenz C, Rebel A, Ackem K van, et al (1998) Local cerebral blood flow, local cerebral glucose utilization, and flow-metaboUsm coupling during sevoflurane versus isoflurane anesthesia in rats. Anesthesiology 89:1480–1488

    Article  PubMed  CAS  Google Scholar 

  12. Maekawa T, Tommasino C, Shapiro HM, et al (1986) Local cerebral blood flow and glucose utilization during isoflurane anesthesia in the rat. Anesthesiology 65:144–151

    Article  PubMed  CAS  Google Scholar 

  13. Hendrich KS, Kochaneck PM, Melick JA, et al (2001) Cerebral perfusion during anesthesia with fentanyl, isoflurane, or pentobarbital in normal rats studied with arterial spin-labeled MRI. Magn Reson Med 46:202–206

    Article  PubMed  CAS  Google Scholar 

  14. Hansen TD, Warner DS, Todd MM, et al (1989) The role of cerebral metabohsm in determining the local cerebral blood flow effects of volatile anesthetics: evidence for persisting flow-meta- bohsm coupling. J Cereb Blood Flow Metab 9:323–328

    Article  PubMed  CAS  Google Scholar 

  15. Shapiro HM, Greenberg JH, Reivich M, et al (1978) Local cerebral glucose uptake in awake and halothane-anesthetized primates. Anesthesiology 48:97–103

    Article  PubMed  CAS  Google Scholar 

  16. Alkire MT, Haier RJ, Shah NK, et al (1997) Positron emission tomography study of regional cerebral metabolism in humans during isoflurane anesthesia. Anesthesiology 86:549–557

    Article  PubMed  CAS  Google Scholar 

  17. Alkire MT (1998) Quantitative EEG correlations with brain glucose metabolic rate during anesthesia in volunteers. Anesthesiology 89:323–333

    Article  PubMed  CAS  Google Scholar 

  18. Alkire MT, Pomfrett CJD, Haier RJ, et al (1999) Functional brain imaging during anesthesia in humans. Effects of halothane on global and regional cerebral glucose metabohsm. Anesthesiology 90:701–709

    Article  PubMed  CAS  Google Scholar 

  19. Alkire MT, Haier RJ, Fallon JH (2000) Toward a unified theory of narcosis: brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness. Conscious Cogn 9:370–386

    Article  PubMed  CAS  Google Scholar 

  20. Kaisti KK, Metsahonkala L, Teras M, et al (2002) Effects of surgical levels of propofol and sevoflurane anesthesia on cerebral blood flow in healthy subjects studied with positron emission tomography. Anesthesiology 96:1358–1370

    Article  PubMed  CAS  Google Scholar 

  21. Kaisti KK, Jaaskelainen SK, Rinne JO, et al (1999) Epileptiform discharges during 2 MAC sevoflurane anesthesia in two healthy volunteers. Anesthesiology 91:1952–1955

    Article  PubMed  CAS  Google Scholar 

  22. Antognini JF, Buonocore MH, Disbrow EA, et al (1997) Isoflurane anesthesia blunts cerebral responses to noxious and innocuous stimuli: a fMRI study. Life Sci 61:349–354

    Article  Google Scholar 

  23. Heinke W, Schwarzbauer C (2001) Subanesthetic isoflurane affects task-induced brain activation in a highly specific manner. Anesthesiology 94:973–981

    Article  PubMed  CAS  Google Scholar 

  24. London E, Fanelli R, Szikszay M, et al (1986) Effects of opioid analgesics on local cerebral glucose utilization. NIDA Res Monograr 75:379–381

    CAS  Google Scholar 

  25. Cohen SR, Kimes AS, London ED (1991) Morphine decreases cerebral glucose utilization in limbic and forebrain regions while pain has no effect. Neuropharmacology 30:125–134

    Article  PubMed  CAS  Google Scholar 

  26. Beck T, Kriegelstein J (1986) The effects of tifluadom and ketazocine on behavior, dopamine turnover in the basal ganglia and local cerebral glucose utilization in rats. Brain Res 381:327–335

    Article  PubMed  CAS  Google Scholar 

  27. Orzi F, Passarel H F, La Riccia M, et al (1996) Intravenous morphine increases glucose utilization in the shell of the rat nucleus accumbens. Eur J Pharmacol 302:49–51

    Article  PubMed  CAS  Google Scholar 

  28. Tommasino C, Maekawa T, Shapiro HM, et al (1984) Fentanyl-induced seizures activate subcortical brain metabohsm. Anesthesiology 60:283–290

    Article  PubMed  CAS  Google Scholar 

  29. Kofke WA, Garman RH, Tom WC, et al (1992) Alfentanil-induced hypermetabolism, seizure, and histopathology in rat brain. Anesth Analg 75:953–964

    Article  PubMed  CAS  Google Scholar 

  30. Kofke WA, Attaallah AF, Kuwabara H, et al (2002) The neuropathologic effects in rats and neurometabohc effects in humans of large-dose remifentanil. Anesth Analg 94:1229–1236

    Article  PubMed  CAS  Google Scholar 

  31. Young ML, Smith DS, Greenberg J, et al (1984) Effects of sufentanil on regional cerebral glucose utilization in rats. Anesthesiology 61:564–568

    Article  PubMed  CAS  Google Scholar 

  32. Beck T, Wenzel J, Kuschinsky K, et al (1989) Morphine-induced alterations of local cerebral glucose utilization in the basal gangha of rats. Brain Res 497:205–213

    Article  PubMed  CAS  Google Scholar 

  33. Ableitner A (1994) Brain sites involved in delta-opioid receptor-mediated actions. Eur J Pharmacol 271:213–222

    Article  PubMed  CAS  Google Scholar 

  34. Kraus MA, Piper JM, Kometsky C (1996) Naloxone alters the local metabolic rate for glucose in discrete bram regions associated with opiate withdrawal. Brain Res 724:33–40

    Article  PubMed  CAS  Google Scholar 

  35. Levy RM, Fields HL, Stryker MP, et al (1986) The effect of analgesic doses of morphine on regional cerebral glucose metabohsm in pain-related structures. Brain Res 368:170–173

    Article  PubMed  CAS  Google Scholar 

  36. Gescuk B, Lang S, Porrino LJ, et al (1994) The local cerebral metabohc effects of morphine in rats exposed to escapable footshock. Brain Res 663:303–311

    Article  PubMed  CAS  Google Scholar 

  37. Tuor UI, Mahsza K, Foniok T, et al (2000) Functional magnetic resonance imaging in rats subjected to intense electrical and noxious chemical stimulation of the forepaw. Pain 87:315–324

    Article  PubMed  CAS  Google Scholar 

  38. Chang C, Shyu BC (2001) A fMRI study of brain activations during non-noxious and noxious electrical stimulation of the sciatic nerve of rats. Brain Res 897:71–81

    Article  PubMed  CAS  Google Scholar 

  39. Jones AK, Friston KJ, Qi LY, et al (1991) Sites of action of morphine in the brain (letter). Lancet 338:825

    Article  PubMed  CAS  Google Scholar 

  40. London ED, Broussolle EP, Links JM, et al (1990) Morphine-induced metabohc changes in human brain. Studies with positron emission tomography and [18F]flurodoxyglucose. Arch Gen Psychiatry 47:73–81

    Article  PubMed  CAS  Google Scholar 

  41. Walsh SL, Gilson SF, Jasinski DR, et al (1994) Buprenorphine reduces cerebral glucose metabohsm in poly drug abusers. Neuropsychopharmacology 10:157–170

    Article  PubMed  CAS  Google Scholar 

  42. Schlaepfer TE, Strain EC, Greenberg BD, et al (1998) Site of opioid action in the human brain: mu and kappa agonists’ subjective and cerebral blood flow effects. Am J Psychiatry 155:470–473

    PubMed  CAS  Google Scholar 

  43. Firestone LL, Gyulai F, Mintun M, et al (1996) Human brain activity response to fentanyl imaged by positron emission tomography Anesth Analg 82:1247–1251

    PubMed  CAS  Google Scholar 

  44. Wagner KJ, Willoch F, Kochs EF, et al (2001) Dose-dependent regional cerebral blood flow changes during remifentanil infusion in humans. Anesthesiology 94:732–739

    Article  PubMed  CAS  Google Scholar 

  45. Lorenz IH, Kolbitsch C, Schocke M, et al (2000) Low-dose remifentanil increases regional cerebral blood flow and regional cerebral blood volume, but decreases regional mean transit time and regional cerebrovascular resistance in volunteers. Br J Anaesth 85:199–204

    Article  PubMed  CAS  Google Scholar 

  46. Duncan GH, Bushnell MC, Friston KJ, et al (1992) Pain and activation in the thalamus. Trends Neurosci 15:1355

    Google Scholar 

  47. Adler LJ, Gyulai EE, Diehl DJ, et al (1997) Regional brain activity changes associated with fentanyl analgesia elucidated by positron emission tomography Anesth Analg 84:120–126

    PubMed  CAS  Google Scholar 

  48. Cole DJ, Shapiro HM (1989) Different 1.2 MAC combinations of nitrous oxide-enflurane cause unique cerebral and spinal cord metabolic responses in the rat. Anesthesiology 70:787–792

    Article  PubMed  CAS  Google Scholar 

  49. Crosby G, Crane AM, Sokoloff L (1984) A comparison of local rates of glucose utilization in spinal cord and brain in conscious and nitrous oxide or pentobarbital-treated rats. Anesthesiology 61:434–438

    Article  PubMed  CAS  Google Scholar 

  50. Sakabe T, Tsutsui T, Maekawa T, et al (1985) Local cerebral glucose utilization during nitrous oxide and pentobarbital anesthesia in rats. Anesthesiology 63:262–266

    Article  PubMed  CAS  Google Scholar 

  51. Crosby G, Crane AM, Jehle J, et al (1983) The local metabohc effects of somatosensory stimulation in the central nervous system of rats given pentobarbital or nitrous oxide. Anesthesiology 58:38–43

    Article  PubMed  CAS  Google Scholar 

  52. Gyulai EE, Firestone LL, Mintun MA, et al (1996) In vivo imaging of human limbic responses to noxious stimuli. Anesth Analg 83:291–298

    PubMed  CAS  Google Scholar 

  53. Gyulai EE, Firestone LL, Mintun MA (1997) In vivo imaging of nitrous oxide-induced changes in cerebral activation during noxious heat stimuli. Anesthesiology 86:538–548.

    Article  PubMed  CAS  Google Scholar 

  54. Ori C, Freo U, Perini G, Dam M (1995) Dissociated behavioral and regional cerebral metabolic (rCMRglc) effects of midazolam and flunitrazepam in rats. XXV Meeting of the Society for Neuroscience Abstract Book 21:157

    Google Scholar 

  55. Veselis RA, Reinsel RA, Beattie BJ, et al (1997) Midazolam changes cerebral blood flow in discrete brain regions: an H2(15)0 positron emission tomography study. Anesthesiology 87: 1106–1117

    Article  PubMed  CAS  Google Scholar 

  56. Mathew RJ, Wilson WH, Daniel DG (1985) The effect of nonsedating doses of diazepam on regional cerebral blood flow. Biol Psychiatiy 20:1109–1116

    Article  CAS  Google Scholar 

  57. Volkow ND, Wang GJ, Hitzemann R, et al (1995) Depression of thalamic metabohsm by lorazepam is associated with sleepiness. Neuropsychopharmacology 12:123–132

    Article  PubMed  CAS  Google Scholar 

  58. Hodes JE, Soncrant TT, Larson DM, et al (1985) Selective changes in local cerebral glucose utilization by phénobarbital in the rat. Anesthesiology 63:633–639

    Article  PubMed  CAS  Google Scholar 

  59. Herkenham M (1981) Anesthetics and the habenulo-interpeduncolar system: selective sparing of metabohc activity. Anesthesiology 56:461–466

    Google Scholar 

  60. Archer DP, Froehch J, McHugh M, et al (1995) Local cerebral glucose utilization in stimulated rats sedated with thiopental. Anesthesiology 83:160–168

    Article  PubMed  CAS  Google Scholar 

  61. Blacklock JB, Oldfield EH, Di Chiro G, et al (1987) Effect of barbiturate coma on glucose utilization in normal brain versus gliomas. Positron emission tomography studies. J Neurosurg 67:71–75

    Article  PubMed  CAS  Google Scholar 

  62. Martin E, Thiel T, Joeri P, et al (2000) Effect of pentobarbital on visual processing in man. Hum Brain Mapp 10:132–139

    Article  PubMed  CAS  Google Scholar 

  63. Dam M, Ori C, Pizzolato G, et al (1990) The effects of propofol anesthesia on local cerebral glucose utilization in the rat. Anesthesiology 73:499–505

    Article  PubMed  CAS  Google Scholar 

  64. Alkire MT, Haier RJ, Barker SJ, et al (1995) Cerebral metabolism during propofol anesthesia in humans studied with positron emission tomography. Anesthesiology 82:393–403

    Article  PubMed  CAS  Google Scholar 

  65. Eiset P, Paus T, Daloze T, et al (1999) Brain mechanism of propofol induced loss of consciousness in humans: a positron emission tomography study. J Neurosci 19:5506–5513

    Google Scholar 

  66. Bonhomme V, Eiset P, Meuret P, et al (2001) Propofol anesthesia and cerebral blood flow changes elicited by vibrotactile stimulation: a positron emission tomography study. J Neurophysiol 85: 1299–1308

    PubMed  CAS  Google Scholar 

  67. Eintrei C, Sokoloff L, Smith CB (1999) Effects of diazepam and ketamine administered individually or in combination on regional rates of glucose utilization in rat brain. Br J Anaesth 82:596–602

    Article  PubMed  CAS  Google Scholar 

  68. Davis DW, Mans AM, Biebuyck JF, et al (1988) The influence of ketamine on regional brain glucose use. Anesthesiology 69:199–205

    Article  PubMed  CAS  Google Scholar 

  69. Burdett NG, Menon DK, Carpenter TA, et al (1995) Visualisation of changes in regional cerebral blood flow (rCBF) produced by ketamine using long TE gradient-echo sequences: preliminary results. Magn Reson Imaging 13:549–553

    Article  PubMed  CAS  Google Scholar 

  70. Ori C, Freo U, Merico A et al (1999) Effects of recovery from anesthesia with ketamine racemic mixture and stereoisomers on local cerebral glucose utilization (LCGU) in rat. XXIX Meetmg of the Society for Neuroscience 25:536

    Google Scholar 

  71. Breier A, Malhotra AK, Finals DA, et al (1997) Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers. Am J Psychiatry 154:805–811

    PubMed  CAS  Google Scholar 

  72. Holcomb HH, Lahti AC, Medoff DR, et al (2001) Sequential regional cerebral blood flow brain scans using PET with H2(15)0 demonstrate ketamine actions in CNS dynamically. Neuropsychopharmacology 25:165–172

    Article  PubMed  CAS  Google Scholar 

  73. Lahti AC, Holcomb HH, Medoff DR, et al (1995) Ketamine activates psychosis and alters limbic blood flow in schizophrenia. Neuroreport 6:869–872

    Article  PubMed  CAS  Google Scholar 

  74. Vollen weider FX, Leenders KL, Oye I (1997) Differential psychopathology and patterns of cerebral glucose utilisation produced by (S)- and (R)-ketamine in healthy volunteers using positron emission tomography (PET). Eur Neuropsychopharmacol 7:25–38

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Italia

About this paper

Cite this paper

Freo, U., Ori, C. (2003). Mapping cerebral metabolic and blood flow effects of general anaesthetics. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2215-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2215-7_19

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0194-7

  • Online ISBN: 978-88-470-2215-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics