Advertisement

Effects of opioid analgesics on the action of general anaesthetics

  • P. Giusti
Conference paper

Abstract

The air-dried, milky exudation obtained by incising the unripe capsules of papaver somniferum, or its variety album, have been used for many hundreds of years to relieve pain. The chief narcotic principal alkaloid of opium was isolated by Sertürner in 1803 and called morphine, in honor of Morpheus, the god of dreams or of sleep. Later morphine was shown to be almost entirely responsible for the analgesic activity of crude opium. In 1954, Beckett and Casey [1] showed that morphine and other opioids produce their pharmacological effects by interacting with specific receptors. The concept that there is more than one type of opioid receptor arose to explain the dual actions of the synthetic opioid nalorphine, which antagonizes the analgesic effect of morphine in man, but also acts as an analgesic in its own right. Martin [2] concluded that the analgesic action of nalorphine is mediated by a receptor, later called the k-opioid receptor, that is different from the morphine receptor. Evidence for multiple receptors, m, k and s, came from the demonstration of different profiles of pharmacological activity in the chronic spinal dog with the prototype agonists morphine, ketazocine, and N-allyInormetazocine (SKF10047) [3].The existence of the d-receptor was subsequently proposed to explain the profile of activity in vitro of the enkephalins (the first endogenous opioid peptides), and on the basis of the relative potency of the non-selective opioid antagonist naloxone to reverse endogenous opioid peptide inhibition of the nerve-evoked contractions of the mouse vas deferens [4].

Keywords

Opioid Receptor Endogenous Opioid Peptide Anaesthetic Interaction Opioid Receptor Family Putative Subtype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beckett A, Casey A (1954) Synthetic analgesics: stereochemical considerations. J Pharm Pharmacol 6:986–1001PubMedCrossRefGoogle Scholar
  2. 2.
    Martin WR (1967) Opioid antagonists. Pharmacol Rev 19:463–521PubMedGoogle Scholar
  3. 3.
    Martin WR, Eades CG, Thompson J A, et al (1976) The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197:517–532PubMedGoogle Scholar
  4. 4.
    Lord JA, Waterfield AA, Hughes J, Kosterlitz HW (1977) Endogenous opioid peptides: multiple agonists and receptors. Nature 267:495–499PubMedCrossRefGoogle Scholar
  5. 5.
    Evans CJ, Keith DE Jr, Morrison H et al (1992) Cloning of a delta opioid receptor by functional expression. Science 258:1952–1955PubMedCrossRefGoogle Scholar
  6. 6.
    Kieffer BL, Befort K, Gaveriaux-Ruff C, Hirth CG (1992) The delta-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc Natl Acad Sci U S A 89: 12048–52. Erratum in: Proc Natl Acad Sci U S A 1994 91:1193PubMedCrossRefGoogle Scholar
  7. 7.
    Chen Y, Mestek A, Liu J, et al (1993) Molecular cloning and functional expression of a mu-opioid receptor from rat brain. Mol Pharmacol 44:8–12PubMedGoogle Scholar
  8. 8.
    Minami M, Toya T, Katao Y, et al (1993) Cloning and expression of a cDNA for the rat k-opioid receptor. FEBS Lett 329:291–295PubMedCrossRefGoogle Scholar
  9. 9.
    Mollereau C, Parmentier M, Mailleux P, (1994) ORLl, a novel member of the opioid receptor family; Cloning, functional et al expression and locahzation. FEBS Lett 341:33–8PubMedCrossRefGoogle Scholar
  10. 10.
    Schulz S, Schreff M, Koch T, et al (1998) Immunolocahzation of two mu-opioid receptor isoforms (MORI and MORIB) in the rat central nervous system. Neuroscience 82:613–622PubMedCrossRefGoogle Scholar
  11. 11.
    Matthes HW, Maldonado R, Simonin F et al (1996) Loss of morphme-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 383: 819–823PubMedCrossRefGoogle Scholar
  12. 12.
    Wolozin BL, Pasternak GW (1981) Classification of multiple morphine and enkephalin binding sites in the central nervous system. Proc Natl Acad Sci U S A 78:6181–6185PubMedCrossRefGoogle Scholar
  13. 13.
    Ling GS, Galetta S, Pasternak GW (1984) Oxymorphazone: a long-acting opiate analgesic. Cell Mol Neurobiol 4:1–13PubMedCrossRefGoogle Scholar
  14. 14.
    Ling GS, Spiegel K, Lockhart SH, Pasternak GW (1985) Separation of opioid analgesia from respiratory depression: evidence for different receptor mechanisms. J Pharmacol Exp Ther 232: 149–155PubMedGoogle Scholar
  15. 15.
    Rossi GC, Brown GP, Leventhal L, et al (1996) Novel receptor mechanisms for heroin and morphine-6 beta-glucuronide analgesia. Neurosci Lett 216:1–4PubMedCrossRefGoogle Scholar
  16. 16.
    Brown GP, Yang K, Ouerfelli O, et al (1997) ^H-Morphine-6ß-glucuronide binding in brain membranes and an MOR-1-transfected cell line. J Pharmacol Exp Ther 282:1291–1297Google Scholar
  17. 17.
    Schuller AG, King MA, Zhang J, et al (1999) Retention of heroin and morphine-6 beta-glucuronide analgesia in a new line of mice lacking exon 1 of MOR-l. Nat Neurosci 2:151–156PubMedCrossRefGoogle Scholar
  18. 18.
    Jiang Q, Takemori AE, Sultana M, et al (1991) Differential antagonism of opioid delta antinociception by [D- Ala2,Leu5,Cys6]enkephalin and naltrindole 5’-isothiocyanate: evidence for delta receptor subtypes. J Pharmacol Exp Ther 257:1069–1075PubMedGoogle Scholar
  19. 19.
    Sofuoglu M, Portoghese PS, Takemori AE (1993) 7-Benzylidenenaltrexone (BNTX): a selective delta 1 opioid receptor antagonist in the mouse spinal cord. Life Sci 52:769–775PubMedCrossRefGoogle Scholar
  20. 20.
    Buzas B, Izenwasser S, Portoghese PS, Cox BM (1994) Evidence for delta opioid receptor subtypes regulating adenylyl cyclase activity in rat brain. Life Sci 54:PL101–106CrossRefGoogle Scholar
  21. 21.
    Noble F, Cox BM (1995) Differential regulation of D1 dopamine receptor- and of A2a adenosine receptor-stimulated adenylyl cyclase by mu-, delta 1-, and delta 2-opioid agonists in rat caudate putamen. J.Neurochem 65:125–133PubMedCrossRefGoogle Scholar
  22. 22.
    Tang T, Kiang JG, Cox BM (1994) Opioids acting through delta receptors elicit a transient increase in the intracellular free calcium concentration in dorsal root ganglion- neuroblastoma hybrid ND8–47 cells. J Pharmacol Exp Ther 270:40–46PubMedGoogle Scholar
  23. 23.
    Polastron J, Mur M, Mazarguil H, et al (1994) SK-N-BE: a human neuroblastoma cell line containing two subtypes of delta-opioid receptors. J Neurochem 62:898–906PubMedCrossRefGoogle Scholar
  24. 24.
    Ho BY, Holmes BB, Zhao J, Fujimoto J (1997) Determination of delta-opioid in NG108–15 cells. Eur J Pharmacol 319:109–114PubMedCrossRefGoogle Scholar
  25. 25.
    Connor MA, Keir MJ, Henderson G (1997) Delta-opioid receptor mobilization of intracellular calcium in SH-SY5Y cells: lack of evidence for delta-receptor subtypes. Neuropharmacology 36: 125–133PubMedCrossRefGoogle Scholar
  26. 26.
    Toll L (1995) Intact cell binding and the relation to opioid activities in SH-SY5Y cells. J Pharmacol Exp Ther 273:721–727PubMedGoogle Scholar
  27. 27.
    Law PY, McGinn TM, Wick MJ, et al (1994) Analysis of delta-opioid receptor activities stably expressed in CHO cell lines: function of receptor density? J Pharmacol Exp Ther 271:1686–1694PubMedGoogle Scholar
  28. 28.
    Kosteriitz HW, Paterson SJ, Robson LE (1981) Characterization of the kappa-subtype of the opiate receptor in the guinea-pig brain. Br J Pharmacol 73:939–949CrossRefGoogle Scholar
  29. 29.
    Attali B, Gouarderes C, Mazarguil H, et al (1982) Evidence for multiple “Kappa” binding sites by use of opioid peptides in the guinea-pig lumbo-sacral spinal cord. Neuropeptides 3:53–64PubMedCrossRefGoogle Scholar
  30. 30.
    Chang KJ, Blanchard SG, Cuatrecasas P (1984) Benzomorphan sites are ligand recognition sites of putative epsilon- receptors. Mol Pharmacol 26:484–488PubMedGoogle Scholar
  31. 31.
    Zukin RS, Eghbali M, Olive D, et al (1988) Characterization and visualization of rat and guinea pig brain kappa opioid receptors: evidence for kappa 1 and kappa 2 opioid receptors. Proc Natl Acad Sci USA 85:4061–4065PubMedCrossRefGoogle Scholar
  32. 32.
    Ni Q, Xu H, Partilla JS, et al (1995) Opioid peptide receptor studies. 3. Interaction of opioid peptides and other drugs with four subtypes of the kappa 2 receptor in guinea pig brain. Peptides 16:1083–1095PubMedCrossRefGoogle Scholar
  33. 33.
    Horan P, Costa BR de. Rice KC, Porreca F (1991) Differential antagonism of U69,593- and bremazocine-induced antinociception by (-)-UPHIT: evidence of kappa opioid receptor multiplicity in mice. J Pharmacol Exp Ther 257:1154–1161PubMedGoogle Scholar
  34. 34.
    Cvejic S, Devi LA (1997) Dimerization of the delta opioid receptor: implication for a role in receptor internahzation. J Biol Chem 272:26959–26964PubMedCrossRefGoogle Scholar
  35. 35.
    Jones KA, Borov^sky B, Tamm JA, et al (1998) GAJBA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 396:674–679PubMedCrossRefGoogle Scholar
  36. 36.
    White JH, Wise A, Main MJ et al (1998) Heterodimerization is required for the formation of a functional GAB AB receptor Nature 396:679–682PubMedCrossRefGoogle Scholar
  37. 37.
    Kaupmann K, Malitschek B, Schüler V, et al (1998) GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 396:683–687PubMedCrossRefGoogle Scholar
  38. 38.
    McLatchie LM, Eraser NJ, Main MJ, et al (1998) RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393:333–339PubMedCrossRefGoogle Scholar
  39. 39.
    Henderson G, McKnight AT (1997) The orphan opioid receptor and its endogenous hgand-no- ciceptin/orphanin FQ. Trends Pharmacol Sci 18:293–300PubMedCrossRefGoogle Scholar
  40. 40.
    Meunier JC, Mollereau C, Toll L, et al (1995) Isolation and structure of the endogenous agonist of opioid receptor-like ORLl receptor. Nature; 377:532–535PubMedCrossRefGoogle Scholar
  41. 41.
    Reinscheid RK, Nothacker HP, Bourson A, et al (1995) A neuropeptide that activates an opioidlike G protein-coupled receptor. Science 270:792–794PubMedCrossRefGoogle Scholar
  42. 42.
    Dooley CT, Spaeth CG, Berzetei-Gurske IP, et al (1997) Binding and in vitro activities of peptides with high affinity for the nociceptin/orphanin FQ receptor, ORLl. J Pharmacol Exp Ther 283: 735–741PubMedGoogle Scholar
  43. 43.
    Nakanishi S, Inoue A, Kita T, et al (1979) Nucleotide sequence of cloned cDNA for bovine corticotropin-beta-lipotropin precursor. Nature 278:423–427PubMedCrossRefGoogle Scholar
  44. 44.
    Kakidani H, Furutani Y, Takahashi H, et al (1982) Cloning and sequence analysis of cDNA for porcine beta-neo-endorphin/dynorphin precursor. Nature 298:245–249PubMedCrossRefGoogle Scholar
  45. 45.
    Nöda M, Furutani Y, Takahashi H, et al (1983) Cloning and sequence analysis of calf cDNA and human genomic DNA encoding alpha-subunit precursor of muscle acetylcholine receptor. Nature 305:818–823PubMedCrossRefGoogle Scholar
  46. 46.
    Eppler CM, Hulmes JD, Wang JB, et al (1993) Purification and partial amino acid sequence of a mu opioid receptor from rat brain. J Biol Chem 268:26447–26451PubMedGoogle Scholar
  47. 47.
    Zadina JE, Hackler L, Ge LJ, Kastin AJ (1997) A potent and selective endogenous agonist for the mu-opiate receptor. Nature 386:499–502PubMedCrossRefGoogle Scholar
  48. 48.
    Schreff M, Schulz S, Wibomy D, Hollt V (1998) Immunofluorescent identification of endomor- phin-2-containing nerve fibers and terminals in the rat brain and spinal cord. Neuroreport 9:1031–1034PubMedCrossRefGoogle Scholar
  49. 49.
    Martin-Schild S, Zadina JE, Gerall AA, et al (1997) Locahzation of endomorphin-2-like immunoreactivity in the rat medulla and spinal cord. Peptides 18:1641–1649PubMedCrossRefGoogle Scholar
  50. 50.
    Grudt TJ, Williams JT (1993) kappa-Opioid receptors also increase potassium conductance. Proc Natl Acad Sci U S A 90:11429–11432Google Scholar
  51. 51.
    Vaughan CW, Ingram SL, Connor MA, Christie MJ (1997) How opioids inhibit GAB A-mediated neurotransmission. Nature 390:611–614PubMedCrossRefGoogle Scholar
  52. 52.
    Meyer H (1899) Zur Theorie der Alkoholnarkose. Arch Exp Pathol Pharmacol 42:109–137CrossRefGoogle Scholar
  53. 53.
    Urban BW (2002) Current assessment of targets and theories of anaesthesia. Br J Anaesth 89: 167–183PubMedCrossRefGoogle Scholar
  54. 54.
    Tmdell JR, Bertaccini E (2002) Molecular modelling of specific and non-specific anaesthetic interactions. Br J Anaesth 89:32–40CrossRefGoogle Scholar
  55. 55.
    Dilger JP (2002) The effects of general anaesthetics on ligand-gated ion channels. Br J Anaesth 89:41–51PubMedCrossRefGoogle Scholar
  56. 56.
    Thill M, Rehberg B, Urban BV (1999) Differences in isofluorane sensitivity between sodium channels of different origins. Eur J Physiol 437:R77Google Scholar
  57. 57.
    Frenkel C, Duch DS, Urban BW (1990) Molecular actions of pentobarbital isomers on sodium channels from human brain cortex. Anesthesiology 72:640–649PubMedCrossRefGoogle Scholar
  58. 58.
    Sandorfy (2002) The possible role of oligosaccharides in the mechanisms of anesthesia. In: Urban BW, Barann M (eds) Molecular and basic mechanisms of anaesthesia. Pabst Science Pubhshers, Langekch, pp 63–71Google Scholar
  59. 59.
    Taheri S, Halsey MJ, Liu J, Eger EI 2nd, Koblin DD, Laster MJ (1991) What solvent best represents the site of action of inhaled anesthetics in humans, rats, and dogs? Anesth Analg 72: 627–634.PubMedCrossRefGoogle Scholar
  60. 60.
    Yamakura T, Lewohl JM, Harris RA (2001) Differential effects of general anesthetics on G protein-coupled inwardly rectifying and other potassium channels. Anesthesiology 95:144–153PubMedCrossRefGoogle Scholar
  61. 61.
    Walters HJ, McMahon T, Dadgar J, Messing RO (2000) Ethanol regulates calcium channel subunits by protein kinase C delta-dependent and -independent mechanisms. J Biol Chem 390: 25717–25722CrossRefGoogle Scholar
  62. 62.
    Peoples RW, White G, Lovinger DM, Weight EE (1997) Ethanol inhibition of A^-methyl-D-aspar- tate-activated current in mouse hippocampal neurones: whole-cell patch-clamp analysis. Br J Pharmacol 122:1035–1042PubMedCrossRefGoogle Scholar
  63. 63.
    Shimazu Y, Umemura K, Kawano K, et al (1998) Respiratory effects of halothane and AMPA receptor antagonist synergy in rats. Eur J Pharmacol 342:261–265PubMedCrossRefGoogle Scholar
  64. 64.
    Minami K, Wick MJ, Stem-Bach Y, et al (1998) Sites of volatile anesthetic action on kainate (Glutamate receptor 6) receptors. J Biol Chem J Biol Chem 273:8248–8255CrossRefGoogle Scholar
  65. 65.
    Xiong K, Li C, Weight EE (2000) Inhibition of ethanol of rat P2X(4) receptors expressed in Xenopus oocytes. Br J Pharmacol 130:1394–1398PubMedCrossRefGoogle Scholar
  66. 66.
    Wenningmann I, Barann M, Vidal AM, Dilger JP (2001) The effects of isoflurane on acetylcholine receptor channels. 3. Effects of conservative polar-to-nonpolar mutations within the channel pore. Mol Pharmacol 60:584–594.PubMedGoogle Scholar
  67. 67.
    Eisele JL, Bertrand S, Galzi JL, et al (1993) Chimaeric nicotinic-serotonergic receptor combines distinct ligand binding and channel specificities. Nature 366:479–483PubMedCrossRefGoogle Scholar
  68. 68.
    Ueno S, Tmdell JR, Eger EI 2nd, Harris RA (1999) Actions of fluorinated alkanols on GAB A(A) receptors: relevance to theories of narcosis. Anesth Analg 88:877–883PubMedGoogle Scholar
  69. 69.
    Mihic SJ, Ye Q, Wick MJ, et al (1997) Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature 389:385–389PubMedCrossRefGoogle Scholar
  70. 70.
    Tmdell JR, Costa AK, Csemarsky CA (1989) Inhibition of protein kinase C phosphorylation by mono- and divalent cations. Biochem Biophys Res Commun 162:45–50CrossRefGoogle Scholar
  71. 71.
    Rebecchi MJ, Pentyala SN (2000) Anesthetic action on other targets: protein kinase C and guanine nucleotide-binding protein. Br J Anesth 89:62–78Google Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • P. Giusti

There are no affiliations available

Personalised recommendations