Thoracic impedance tracing in perioperative hemodynamic monitoring: a technique to be revisited

  • M. Favaro
  • B. Allaria
  • M. Resta
Conference paper


Thoracic electrical bioimpedance (TEB) is a non-invasive method used to evaluate beat-by-beat stroke volume (SV) and, when the heart rate (HR) is known, cardiac output (CO). Given the fact that in the electrical impedance signal it is easy to identify the start and end of systole, when an electrocardiographic signal is available this method can also be used for the beat-to-beat measurement of the left ventricular pre-ejection period (PEP), the left ventricular ejection time (LVET), and the PEP/LVET ratio (Weissler quotient), which is widely considered an excellent index for monitoring left ventricular contractility (Fig. 1).


Cardiac Output Cardiac Index Ejection Time Impedance Cardiography Systolic Time Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kubiceck WG (1996) Development and evaluation of an impedance cardiac output system. Aerospace Med 12: 1208–1212Google Scholar
  2. 2.
    Sramek B (1982) Cardiac output by electrical impedance. Med Electronics 4: 93–97Google Scholar
  3. 3.
    Bernstein DP (1986) A new stroke volume equation for thoracic electrical impedance: theory and rationale. Crit Care Med 14: 904–909PubMedCrossRefGoogle Scholar
  4. 4.
    Shoemaker WC, Howard Belzbere et al (1998) Multicenter study of non-invasive monitoring systems as alternatives to invasive monitoring of acutely ill emergency patients. Chest 114: 1643–1652PubMedCrossRefGoogle Scholar
  5. 5.
    Young JD, Mc Quillón P et al (1993) Comparison of thoracic electrical bioimpedance and thermodilution for the measurement of cardiac index in patients with severe sepsis. Brit J Anaesth 70: 58–62PubMedCrossRefGoogle Scholar
  6. 6.
    Jensen L, Yakimets J, Teo KK (1995) A review of impedance cardiography. Heart Lung 24: 183–193PubMedCrossRefGoogle Scholar
  7. 7.
    Spiering W, Van Es PN, De Leeuw PW (1998) Comparison of impedance cardiography and dye dilution method for measuring cardiac output. Heart 79: 437–441PubMedGoogle Scholar
  8. 8.
    Stetz CW, Miller RG et al. (1982) Reliability of the thermodilution method in the determination of cardiac output in clinical practice. Am Rev Respir Dis 126: 1001–1004PubMedGoogle Scholar
  9. 9.
    Cropp GJA, Burton AC (1965) Theoretical considerations and model experiments on the validity of indicator dilution methods for measurements of variable flow. Circ Res 18: 26–48CrossRefGoogle Scholar
  10. 10.
    Scheuer-Leeser M, Morguet A et al (1997) Some aspects to the pulsation error in blood-flow calculations by indicator-dilution techniques. Med Biol Eng Comput 15: 118–123CrossRefGoogle Scholar
  11. 11.
    Mackenzie JD, Haites NE et al (1986) Method of assessing the reproducibility of blood flow measurements…factors influencing the performance of thermodilution cardiac out-put. Br Heart J 55: 14–24PubMedCrossRefGoogle Scholar
  12. 12.
    Petros S, Engelmann L (2001) Validity of an abbreviated indirect calorimetry protocol for measurement of resting expenditures in mechanically ventilated and spontaneously breathing critically ill patients. Crit Care Med 27: 1164–1168Google Scholar
  13. 13.
    Bland JM, Altman GD (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet I: 307–310CrossRefGoogle Scholar
  14. 14.
    Bland JM, Altman GD (1995) Comparing methods of measurement: why plotting difference against standard method in misleading. Lancet 346: 1085–1987PubMedCrossRefGoogle Scholar
  15. 15.
    Van der Meer BJM, De Vries JPPM, Schreuder WO et al (1997) Impedance cardiography in cardiac surgery patients: abnormal body weight gives unreliable cardiac output measurements. Acta Anaesthesiol Scand 41: 708–712PubMedCrossRefGoogle Scholar
  16. 16.
    Young GS, Mc Quillón P (1993) Comparison of thoracic electrical bioimpedance and thermo- dilution for the measurement of cardiac index in patients with severe sepsis. Br J Anaesth 70: 58–62PubMedCrossRefGoogle Scholar
  17. 17.
    Shoemaker WC, Wo CC, Yu S et al (2000) Invasive and non invasive hemodynamic monitoring of acutely ill sepsis and septic shock patients in the emergency department. Eur J Emerg Med 7: 169–75PubMedCrossRefGoogle Scholar
  18. 18.
    Tani H, Singer W, McPhee BR et al (2000) Splanchnic mesenteric capacitance in the posmral tachycardia syndrome (POTS). Anat Neurosci 86: 107–113Google Scholar
  19. 19.
    Rosenberg P, Yoncy CW (2000) Non invasive assessment of hemodynamics: an emphasis on bioimpedance cardiography. Curr Opin Cardiol 15: 151–155PubMedCrossRefGoogle Scholar
  20. 20.
    Spiess BD, Patel MA, Soltow LO, Wright IH (2001) Comparison of bioimpedance versus thermodilution cardiac output during cardiac surgery: evaluation of a second generation bioimpedance device. J Cardiothorac Vase Anaesth 15: 567–573CrossRefGoogle Scholar
  21. 21.
    Sargerman WS, Riffenpurgh RH, Spiess BD (2002) Equivalence of bioimpedance and thermodilution in measuring cardiac index after cardiac surgery. J Cardiothorac Vase Anaesth 16: 8–14CrossRefGoogle Scholar
  22. 22.
    Garrard CL, Weissler AM, Dodge HT (1970) The relationship of alterations in systolic time intervals to ejection fraction in patients with cardiac disease. Circulation 11: 455CrossRefGoogle Scholar
  23. 23.
    Marik PE, Pendelton JE, Smith R (1997) A comparison of hemodynamic parameters derived from transthoracic electrical bioimpedance with those parameters obtained by hemodilution and ventricular angiography. Crit Care Med 25: 1545–1550PubMedCrossRefGoogle Scholar
  24. 24.
    Bonjer FM, Van Der Berg JW, Dirken NJ (1952) The origin of the variations of body impedance occurring during the cardiac cycle. Circulation 12: 415–420CrossRefGoogle Scholar
  25. 25.
    Balestra B, Malacrida R, Leonardi L et al (1992) Esophageal electrodes allow precise assessment of cardiac output by bioimpedance. Crit Care Med 20: 62–67PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • M. Favaro
  • B. Allaria
  • M. Resta

There are no affiliations available

Personalised recommendations