Advertisement

Comparison of haemodynamic parameters derived from invasive and non-invasive control methods

  • B. Allaria
  • M. Favaro
  • M. Resta
Conference paper

Abstract

Assessing the haemodynamic status of critical patients is undoubtedly one of the cornerstones of diagnostics and the ensuing therapy in intensive care units. The success of the Swan-Ganz catheter over the past 30 years is linked to the fact that it yields data such as cardiac output (CO), systemic vascular resistance (SVR) and pulmonary vascular resistance (PVR), left and right ventricular stroke work (LVSW and RVSW, respectively), and the filling pressure of the left ventricle (WP) and of the right ventricle (CVP). However, the Swan-Ganz catheter also furnishes shaky information on cardiac preloading [1,2], and its use as a gold standard for comparisons with other methods of measuring CO raises several questions. Indeed, in 1990 the European Society of Cardiology pinpointed the dilution method using a dye such as indocyanine green, with spectrophotometric evaluation of serial assays, as the gold standard.

Keywords

Cardiac Output Indocyanine Green Haemodynamic Parameter Critical Patient Haemodynamic Status 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rense C, Vincent JL, Pinsky MR (1990) Measurement of right ventricular volumes during fluid challenge. Chest 98:1450–1454CrossRefGoogle Scholar
  2. 2.
    Dichel L, Wilson RF, Heins J, et al (1994) End diastolic volume versus pulmonary artery wedge pressure in evaluating cardiac preload in trauma patients. J Trauma 37:950–955CrossRefGoogle Scholar
  3. 3.
    Connors AF, Speroff T, Dawson NV et al (1996) The effectiveness of right heart catheterization in the initial care of critically iU patients. JAMA 276:889–897PubMedCrossRefGoogle Scholar
  4. 4.
    Suyder JV, Powner DJ (1982) Effects of mechanical ventilation on the measurement of cardiac output by thermodilution. Crit Care Med 10:677–681CrossRefGoogle Scholar
  5. 5.
    Mack Henzie JD, Haite NE, Rawles JM (1986) Method of assessing the reproducibility of blood flow measurement: factors influencing the performance of thermodilution cardiac output computers. Br Heart J 55:14–24CrossRefGoogle Scholar
  6. 6.
    Nishikawa T, Dohi S (1993) Errors in measurement of cardiac output by thermodilution. Can J Anaesth 4:142–153Google Scholar
  7. 7.
    Van Grondell A, Ditchey RV, Groves BM, et al (1983) Themodilution method overestimates low cardiac output in humans. Am J Physiol 245:H690-H692Google Scholar
  8. 8.
    Staller JK, Herbst TJ, Hurford TJ, Rie MA (1986) Spuriously high cardiac output from injecting thermal indicator through an ensheathed part. Crit Care Med 14:1064–1065CrossRefGoogle Scholar
  9. 9.
    Ohteki K, Nagara H, Wada J, et al (1981) Measurement of cardiac output by thermodilution and Fick methods in man. Problems in case of tricuspid regurgitation. Kokyn Jurikan 29:433–437Google Scholar
  10. 10.
    Hillis LD, Firth BG, Wirinford MD (1985) Analysis of factors affecting the variability of Fick versus indicators dilution measurement of cardiac output. Am J Cardiol 56:764–768PubMedCrossRefGoogle Scholar
  11. 11.
    Linch J, Kaemmerer H (1990) Comparison of a modified Fick method with thermodilution for determining cardiac output in critically ill patients on mechanical ventilation. Intensive Care Med 16:248–251CrossRefGoogle Scholar
  12. 12.
    Raurich JM Ibanez J, Morse P (1989) Validation of a new closed circuit indirect colorimetry method compared with the open Douglas bag method. Intensive Care Med 15:274–278CrossRefGoogle Scholar
  13. 13.
    Jaffe MB (1999) Partial CO2 rebreathing cardiac output - operating principles of the NICO™ system. J Clin Monit 15:387–401CrossRefGoogle Scholar
  14. 14.
    Reinhart K, Rudolph T, Bredle DL, et al (1989) Comparison of central venous to mixed-venous oxygen saturation during changes in oxygen supply/demand. Chest 95:1216–1221PubMedCrossRefGoogle Scholar
  15. 15.
    Favaro M, Allaria B, Resta M (2002) Thoracic impedence tracing in perioperative hemodynamic monitoring: a technique to be revisited. Crit Care Med (in press)Google Scholar
  16. 16.
    Gedeon A (1985) Non invasive pulmonary blood flow for optimal PEEP. Clin Physiol 5:49–58PubMedCrossRefGoogle Scholar
  17. 17.
    Capek JM, Roy RJ (1988) Non invasive measurement of cardiac output using partial CO2 rebreathing. IEEE Trans BME 35:653–661CrossRefGoogle Scholar
  18. 18.
    Nunn JF (1993) Nunn’s applied respiratory physiology, 4th ed, Britterwork-Heinmann, OxfordGoogle Scholar
  19. 19.
    Odenstedt H, Stenquist O, Lundin S (2002) Clinical evaluation of partial CO2 rebreathing technique for cardiac output monitoring in critically ill patients. Aorta Anaesthesiol Scand 46:152–159CrossRefGoogle Scholar
  20. 20.
    Fuse M, Aoyogi T, Xie CT, et al (1992) Dye dilution curve measurement with principle of the pulse oxymeter Jon J Med Electron Biol Eng 30:249–54Google Scholar
  21. 21.
    lijima T, Aoyogi T, Iwao Y, et al (1997) Cardiac output and circulating blood volume analysis by pulse dye densitometry. J Clin Monit 13:81–89CrossRefGoogle Scholar
  22. 22.
    Imai T, Takhahashi K, Eukura H, et al (1997) Measurement of cardiac output by pulse dye densitometry using indocyanine green: a comparison with the thermodilution method. Anaesthesiology 87:816–822CrossRefGoogle Scholar
  23. 23.
    Bremer F, Schiele A, Tscheikowsky K (2002) Cardiac output measurement by pulse dye densitometry: a comparison with the Fick’s principle and thermodilution method. Intensive Care Med 28:399–405PubMedCrossRefGoogle Scholar
  24. 24.
    Sakka SG, Reinhast K, Weighscheider K, et al (2002) Comparison of cardiac output and circulatory blood volumes by transpulmonary thermo-dye dilution and transcutaneous indocyanine green measurement in critically ill patients. Chest 121:559–565CrossRefGoogle Scholar
  25. 25.
    Imai T, Mitaka C, Noraka T, et al (2000) Accuracy and repeatability of blood volume measurement by pulse dye densitometry compared to the conventional method using 51Ca-labeled red blood cells. Intensive Care Med 26:1343–1349PubMedCrossRefGoogle Scholar
  26. 26.
    Critchley LAH Critchley JAJH (1999) A meta-analysis of studies using bias and precision statistics to compare cardiac output. Measurement techniques. J Clin Monit Comp 15:85–91CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • B. Allaria
  • M. Favaro
  • M. Resta

There are no affiliations available

Personalised recommendations