Does technological evolution justify the use of Swan — Ganz catheters in perioperative haemodynamic monitoring?

  • R. Muchada
Conference paper


The measurement of the cardiac output (CO) by thermodilution is based on an ancient method allowing its calculation, the principle of Fick (1829 – 1901) [1]. This author has described the possibility of calculating the CO by measuring the value of a marker, the O2, introduced into the arterial entry, via respiratory diffusion, and recovered at the venous exit, via respiratory exhalation, of the cardiovascular system. The method, indirect at the beginning and direct later, with the introduction of arterial and cardiac catheterization (the reason why A.F. Cournanad, D. W. Richardson, and W. T. Forsman received the Nobel prize in 1956), has allowed the determination of CO.


Cardiac Output Right Ventricle Cardiac Output Measurement Aortic Blood Flow Thermodilution Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fick A (1870) Ueber tells messung the blutquantums in der herzenventrklen. Sitzung der Phys Med Gezell zu Wirzburg. July 9. P 36Google Scholar
  2. 2.
    Hamilton WF (1962) Measurement of the cardiac output. Handbook of physiology, section 2 Flight Circulation 1. American Physiological Society, Washington, p 567Google Scholar
  3. 3.
    Fegler G (1954) Measurement of cardiac output in anesthetized animals by thermodilution method. Q J Exp Physiol 39:153–164PubMedGoogle Scholar
  4. 4.
    Ganz W, Donoso R, Marcus HS, et al (1971) A new technique for the measurement of cardiac output by thermodilution in man. Am J Cardiol 27:392–396PubMedCrossRefGoogle Scholar
  5. 5.
    Stetz CW, Miller RG, Kelly GE, Raffin Y (1982) Reliability of the thermodilution method in the determination of cardiac output in clinical practice. Am Rev Respir Tell 126:1001–1004Google Scholar
  6. 6.
    Backgammon L, Hanique G, Glorious D, et al (1996) Analysis of the accuracy of continue thermo dilution cardiac output measurement. Intensive Care Med 22:125–1129CrossRefGoogle Scholar
  7. 7.
    Vincent JL, Thirion M, BrimouUe S, et al (1986) Thermodilution measurement of right ventricular fraction ejection with has modified pulmonary artery catheter. Intensive Care Med 12:33–38PubMedCrossRefGoogle Scholar
  8. 8.
    Dhainaut J, Brunet F, MonsalHer J, et al (1987) Bedside evaluation of right ventricular performance using has rapid computerized thermodilution method. Crit Care Med 15:48–152CrossRefGoogle Scholar
  9. 9.
    Garden F, Brown-Ney D, Hardy H, et al (1991) Combined thermodilution and two-dimensional echocardiographic evaluation of right ventricular function during respiratory support with PEER Chest 99:162–168Google Scholar
  10. 10.
    Rapper R, Sibbald WJ (1986) Misled by the wedge? The Swan Ganz catheter and the left ventricle preload. Chest 89:427–434CrossRefGoogle Scholar
  11. 11.
    Boldt J, Menges T, Wolibriick M, et al (1994) Is continuous cardiac output measurement using thermodilution reliable in the critically ill patient? Crit Care Med 22:1913–1918PubMedGoogle Scholar
  12. 12.
    Aranda M, Mihm EG, Garrett S, et al (1998) Continuous cardiac output catheters. Delay in vitro response time after controlled flow change. Anesthesiology 89:1592–1595Google Scholar
  13. 13.
    Nelson LD (1986) Continuous venous oximetry in surgical patients. Ann Surg 203:329–333PubMedCrossRefGoogle Scholar
  14. 14.
    Urban P, Scheidegger D, Gabathuler J, et al (1987) Thermodilution determination of right ventricular volume and fraction ejection: a comparison with biplane angiography. Crit Care Med 15:652–655PubMedCrossRefGoogle Scholar
  15. 15.
    Runciman WB, Ilsley AH, Roberts JG (1981) An evaluation of thermodilution cardiac output measurement using the Swan-Ganz catheter. Intensive Anaesth Care 9: 208–220Google Scholar
  16. 16.
    Woog RH, Me William DB (1983) A comparison of methods of cardiac output measurement. Intensive Anesth Care 11:141–146Google Scholar
  17. 17.
    Elkayan U, Berkley R, Azen S et al (1983) Cardiac output for thermodilution technique. Effect of injectate volumes and temperature on the accuracy and reproducibility in critical ill patient. Chest. 84:418–422Google Scholar
  18. 18.
    Pearl RG, Rosenthal MH, Nielson L, et al (1986) Effect of injectate volume and temperature on thermodilution cardiac output determination. Anesthesiology 64:798–801PubMedCrossRefGoogle Scholar
  19. 19.
    Nelson LD, Anderson HB (1985) Patient selection for iced versus room temperature injectate for thermo dilution cardiac output determination. Crit Care Med 13:182–184PubMedCrossRefGoogle Scholar
  20. 20.
    Meisner H, Glanert S, Stckmeier B, et al (1980) Indicator loss temperature during injection in thermodilution system. Respir Exp Med 159:183–196CrossRefGoogle Scholar
  21. 21.
    Kim ME, Linen YC (1980) Determination of catheter wall heat transfer in cardiac output measurement by thermodilution. Clin Exp Pharmacol Physiol 7:383–389PubMedCrossRefGoogle Scholar
  22. 22.
    Trush DN, Varlotta D (1992) Thermodilution cardiac output: comparison between automated and manual injection of indicator. J Cardiothorac Vase Anesth 6:17–19CrossRefGoogle Scholar
  23. 23.
    Enghoff E, Sjögren S (1973) Thermal dilution for measurement of cardiac output in the pulmonary artery in man in relationship to choice of indicator volume and injection time. Ups J Med Sci 78:33–37PubMedCrossRefGoogle Scholar
  24. 24.
    Stevens JH, Raffin YOUR, Mihm EG, et al (1984) Thermodilution cardiac output measurement. Effects of the respiratory cycle one its reproducibihty. JAMA 253:2240–2242Google Scholar
  25. 25.
    Okamoto K, Komatsu T, Kumar V, et al (1984) Effects of intermittent positive pressure ventilation one cardiac output measurement by thermodilution. Crit Care Med 14:977–980CrossRefGoogle Scholar
  26. 26.
    Wetzel RC, Latson TW (1985) Major errors in thermodilution cardiac output measurement during rapid infusion volume. Anesthesiology 62:684–687PubMedCrossRefGoogle Scholar
  27. 27.
    Bazaral MG, Petre J, Novoa R (1992) Errors in thermodilution cardiac output measurement caused by rapid pulmonary artery temperature decreases after cardio pulmonary by pass. Anesthesiology 77:31–37PubMedCrossRefGoogle Scholar
  28. 28.
    Toumadre JP, Chassard D, Muchada R (1997) Overestimation of low cardiac output measured by thermodilution. Br J Anaesth 79:514–516CrossRefGoogle Scholar
  29. 29.
    Groban L, Cheng EY, Mazzeo H, Muzi M (1993) Changes in stroke volume by ice temperature injectate for thermodilution cardiac output determination. Anesthesiology 79:1444–1445PubMedCrossRefGoogle Scholar
  30. 30.
    Morris SL, King EG, Grace M, Weiber B (1986) Thermodilution cardiac output; in vitro model of low flow states. Crit Care Med 14:57–59CrossRefGoogle Scholar
  31. 31.
    HiUis LD, Firth BG, Winniford MD (1985) Analysis of factors affecting the variability of Fick versus indicator dilution measurement of cardiac output. Am J Cardiol 56:764–768CrossRefGoogle Scholar
  32. 32.
    Hoel BL (1978) Some aspects of the clinical uses of thermodilution in measuring cardiac output. Scand J Clin Lab Invest 38:383–388PubMedCrossRefGoogle Scholar
  33. 33.
    Bjoraker DG, Ketcham TR (1983) Catheter thrombus artifactually decreases thermodilution cardiac output measurements. Anesth Analg 62:1031–1034PubMedCrossRefGoogle Scholar
  34. 34.
    Landais H, Marine JP, Rock A, et al (1990) Measurement of cardiac output by the thermodilution method during left thoracotomy in lateral position in the dog. Acta Anaesthesiol Scand 34:158–161PubMedCrossRefGoogle Scholar
  35. 35.
    Hasan FM, Malanga H, Corrao WM, Braman SS (1984) Effect of catheter position on thermodilution cardiac output measurements during continuous positive -pressure ventilation. Crit Care Med 12:387–390PubMedCrossRefGoogle Scholar
  36. 36.
    Boucek C, Klain M, Obuchowski N, Molner R (1992) Pulmonary artery catheter monitoring during single-lung ventilation in dogs. J Clin Monit 8:209–215PubMedCrossRefGoogle Scholar
  37. 37.
    Hedvall G (1978) The appHcability of the thermodilution method for determination of pulmonary blood flow and pulmonary vascular resistance in infants and children with ventricular septal defects. Scand J Clin Lab Invest 31:61–68CrossRefGoogle Scholar
  38. 38.
    Jögi P, Wemer O (1987) Left-to-right shunt assessed by thermo dilution during surgery for congenital heart disease. Scand J Thorac Cardiovasc Surg 21: 203–206CrossRefGoogle Scholar
  39. 39.
    Beyer J, Lamberti JJ, Replogle RL (1976) Validity of thermodilution cardiac output determination: experimental studies with and without pulmonary insufficiency. J Surg 21:313–317Google Scholar
  40. 40.
    Kashtan HI, Maitiand H, Salerno TA, et al (1987) Effects of tricuspid regurgitation one thermodilution cardiac output: studies in an animal model. Can J Anaesth 34:246–251PubMedCrossRefGoogle Scholar
  41. 41.
    Rahimtoola SH, Swan HJC (1965) Calculation of cardiac output from indicator - dilution curves in presence of mitral regurgitation. Circulation 31:711–718PubMedCrossRefGoogle Scholar
  42. 42.
    Samet P, Bemstein WH, Castillo C (1966) Validity of indicator - dilution determination of cardiac output in patients with mitral regurgitation. Circulation 33:410–416PubMedCrossRefGoogle Scholar
  43. 43.
    Alfieri O, Subramanian S (1975) Cardiac output determination in infants and small children after open intra cardiac operations. Ann Thorac Surg 19:322–326PubMedCrossRefGoogle Scholar
  44. 44.
    Maruschak GF, Potter AM, Schäuble JF, Rogers MC (1982) Overestimation of pediatrics cardiac output by thermal indicator loss. Circulation 65:380–383PubMedCrossRefGoogle Scholar
  45. 45.
    Baskoff JD, Maruschak GF (1981) Correction factor for thermodilution determination of cardiac output in children. Crit Care Med 9:870–872PubMedCrossRefGoogle Scholar
  46. 46.
    Nadeau S, Noble WH (1986) Limitations of cardiac output measurement by thermodilution. J Can Anaesth Soc 33:84CrossRefGoogle Scholar
  47. 47.
    Hosie KF (1962) Thermal - dilution techniques. Circ Res 5:491–504CrossRefGoogle Scholar
  48. 48.
    Nishikawa T, Dohi S (1992) Haemodynamic change associated thermodilution cardiac output determination during myocardial ischaemia or pulmonary oedema in dogs. Acta Anaesthesiol Scand 36:679–83PubMedCrossRefGoogle Scholar
  49. 49.
    Blanloeil Y, Pinaud M (1984) Le calculateur pour mesure du débit cardiaque par thermo dilution; une nouvelle boite de Pandore? Ann Fr Anesth Réanim 3:331–334CrossRefGoogle Scholar
  50. 50.
    Gnaegi H, Feihl F, Perret C (1997) Intensive care physicians’ insufficient knowledge of right - heart catheterization at the bedside: time to act? Crit Care Med 25:213–220PubMedCrossRefGoogle Scholar
  51. 51.
    Swan HJC (1993) Introduction. In: Sprung CL (ed) The pulmonary artery cathéter: methodology and clinical apphcations, 2nd edn. Critical Care Research Associates Closter, NJ, pp 1–9Google Scholar
  52. 52.
    Friesinger GC, Williams SV, Achord JL, et al (1990) Clinical competence in hemodynamic monitoring. A statement for physicians from the ACP/ACC/AHA task force on clinical privileges in cardiology. J Am Coll Cardiol 15:1460–1464Google Scholar
  53. 53.
    American Society of Anesthesiologists (1993) Task Forces on Pulmonary Artery Catheteriza- tion: practice guidelines for pulmonary arteiy catheterization. Anesthesiology 78:380–394CrossRefGoogle Scholar
  54. 54.
    Buchman TG, Dellinger RP, Raphaely RC, et al (1992) Undergraduate education in critical care medicine. Crit Care Med 20:1595–1603PubMedCrossRefGoogle Scholar
  55. 55.
    Iberti TJ, Fisher EP, Leibowitz AB, et al (1990) A multicenter study of physicians’ knowledge of the pulmonary artery catheter. JAMA 264:2928 -2932Google Scholar
  56. 56.
    Truman KJ, McCarthy RJ, Spiess BD (1989) Effects of puhnonary artery catheterization on the outcome of patients undergoing coronary surgery. Anesthesiology 70:199–206CrossRefGoogle Scholar
  57. 57.
    Elliot CG, Zinunermann GA Clemer TP (1979) Complications of pulmonary artery catheterization in the care of critically ill patients. Chest 76:6647–6652Google Scholar
  58. 58.
    Mermel L, Maki D (1994) Infectious complications of Swan Gans pulmonary artery catheters. Am J Res Crit Care Med 149:1020–1036CrossRefGoogle Scholar
  59. 59.
    Sise M, Holling S, Gorth P, Brimm J (1981) Complications of the flow - direct pulmonary artery catheter: a prospective analysis in 219 patients. Crit Care Med 9:315–318PubMedCrossRefGoogle Scholar
  60. 60.
    Boyd KD, Thomas SJ, Gold J, et al (1983) A prospective study of complications of pulmonary artery catheterization in 500 consecutive patients. Chest 84:245–249PubMedCrossRefGoogle Scholar
  61. 61.
    Editorial The Board of the Critic Care Medicine (1997) Pulmonary artery catheter consensus conference: consensus statement. Crit Care Med 6:910–925Google Scholar
  62. 62.
    Connors AF Jr, Speroff T, Dawnson NV, et al (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. JAMA 276:889–897PubMedCrossRefGoogle Scholar
  63. 63.
    Dalen J E, Bone CR (1996) Is it time to pull the pulmonary artery catheter? JAMA 276:916–918PubMedCrossRefGoogle Scholar
  64. 64.
    Vender JS, Prielipp RC, Morell R (1996) The pulmonary catheter, is it safe? APSE Newslett Sping 1997:4–5Google Scholar
  65. 65.
    Dobb GJ (xxxx) The pulmonary artery catheter: too soon for its Swan song. Intensive Care World 13:139–140Google Scholar
  66. 66.
    Connors AF (2002) Equipoise, power and the pulmonary artery catheter. Intensive Care Med 28:225–226PubMedCrossRefGoogle Scholar
  67. 67.
    Vincent JL, Dhainaut JF, Perret C, Suter P (1998) Is the pulmonary artery catheter misused? A European view. Crit Care Med 26:1283–1287PubMedCrossRefGoogle Scholar
  68. 68.
    Sandham JD, Hull RD, Brant RF (1998) The pulmonary artery catheter takes a great fall. Crit Care Med 26:1288–1289PubMedCrossRefGoogle Scholar
  69. 69.
    Tuman KJ; Roizen MF (1997) Outcome assessment and pulmonary artery catheterisation: why does the debate continue? Anesth Analg 84:1–4PubMedGoogle Scholar
  70. 70.
    Pinsky MR (2002) Functional hemodynamic monitoring. Intensive Care Med 28:386–388PubMedCrossRefGoogle Scholar
  71. 71.
    American society of Anesthesiologist and the Society of Cardiovascular Anesthesiologist Task Forces on transesophageal echocardiography (1996) Practice guidelines for perioperative echocardiography. Anesthesiology 84:986–1006CrossRefGoogle Scholar
  72. 72.
    Chenzbraum H, Pinto FJ, Schnittger 1(1994) Transesophageal echocardiography in the intensive care unites: impact one diagnosis and decision - making. Clin Cardiol 17:438–440Google Scholar
  73. 73.
    Suriani RJ, Neustein S, Shore-Lesserson L, Konstadt S (1998) Intraoperative transesophageal echocardiography during not cardiac surgery. J Cardiothoracic Vase Anesth 12:274–280CrossRefGoogle Scholar
  74. 74.
    Singer M (1993) Esophageal Doppler monitoring of aortic blood flow: Beat - by - beat cardiac output monitoring. Int Anesthesiol Clin 31:99–125PubMedCrossRefGoogle Scholar
  75. 75.
    Carrion A, Monchi M, Joly L-M, et al (1998) No Invasive cardiac output monitoring by aortic blood flow determination: evaluation of the Sometec Dynemo 3000 system. Crit Care Med 26: 2066–2072CrossRefGoogle Scholar
  76. 76.
    Lavandier B, Muchada R, Chignier E, et al (1991) Assessment of has potentially noninvasive method for monitoring aortic blood flow in children. Ultrasound Med Biol. 17:107–116PubMedCrossRefGoogle Scholar
  77. 77.
    Muchada R, Cathignol D, Lavandier B, et al (1988) Aortic blood flow measurement. Am J Noninvasiv Cardiol 2:24–31Google Scholar
  78. Bemardin B, Tiger F, Fouche R, Mattei M (1998) Continuous noninvasive measurement of aortic blood flow in critically ill patients with has new esophageal ech - Doppler System. J Crit Care 13:177–183CrossRefGoogle Scholar
  79. 79.
    Heerden PV, van, Baker S, Lim IF, et al (2000) Clinical evaluation of the not invasive cardiac output (NICO) monitor in the intensive care unites. Anesth Intensive Care 28:427–430Google Scholar
  80. 80.
    Odenstedt H, Stenqvist O, Lundin S (2002) Clinical evaluation of partial CO2 rebreathing technique for cardiac output monitoring in critically ill patients. Acta Anaesthesiol Scand 46: 152–159PubMedCrossRefGoogle Scholar
  81. 81.
    Bishop MH, Shoemaker WC, Shuleshko J, Wo CC (1996) No invasive cardiac forefinger monitoring in gunshot wound victims. Acad Emerg Med 3:682–688PubMedCrossRefGoogle Scholar
  82. 82.
    Mark PE, Pendelton I, Smith R (1997) A comparison of hemodynamic parameters derived from transthoracic bioimpedance with those parameters obtained by thermodilution and angiography. Crit Care Med 25:1545–1550CrossRefGoogle Scholar
  83. 83.
    Wallace AW, Salahieh H, Lawrence TO, et al (2000) Endotracheal cardiac output monitor. Anesthesiology 92:178–189PubMedCrossRefGoogle Scholar
  84. Tortoli P, Bambi G, Guidi F, Muchada R (2002) Toward a better quantitative measurement of aortic blood flow. Ultrasound Med Biol 28:249–257PubMedCrossRefGoogle Scholar
  85. 84.
    Muchada R (2002) The anesthesiologist medical doctor and the practice of the general anesthesia. Even today a challenge for the future. Minerva Anestesiol 68:499–503PubMedGoogle Scholar
  86. 85.
    Saunders DA (1997) One the dangers of monitoring. Gold primum not nocere revisited. Anaesthesia 52:399–400PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • R. Muchada

There are no affiliations available

Personalised recommendations