Microcirculation in Critical Illness

  • D. De Backer
  • M.-J. Dubois
  • J. Creteur
Conference paper


Multiple organ failure is frequently observed in critically ill patients, despite the restoration of whole-body haemodynamics. Alterations in microvascular blood flow may play a crucial role in the development of multiple organ failure in these patients. These alterations can have important implications. In rats submitted to 60 min of severe haemorrhage with subsequent restauration of blood volume, Zhao et al. [1] observed that microvascular alterations were more severe in rats that will subsequently die compared to survivors, despite similar whole-body haemodynamics.


Respir Crit Capillary Density Intravital Microscopy Cecal Ligation Microvascular Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhao KS, Junker D, Delano FA, et al (1985) Microvascular adjustments during irreversible hemorrhagic shock in rat skeletal muscle. Microvasc Res 30: 143–153PubMedCrossRefGoogle Scholar
  2. 2.
    Cryer HM, Garrison RN, Kaebnick HW et al (1987) Skeletal microcirculatory responses to hyperdynamic Escherichia coli sepsis in unanesthetized rats. Arch Surg 122: 86–92PubMedCrossRefGoogle Scholar
  3. 3.
    Baker CH, Wilmoth FR (1984) Microvascular responses to E. coli endotoxin with altered adrenergic activity. Circ Shock 12: 165–176PubMedGoogle Scholar
  4. 4.
    Lam CJ, Tyml K, Martin CM et al (1994) Microvascular perfusion is impaired in a rat model of normotensive sepsis. J Clin Invest 94: 2077–2083PubMedCrossRefGoogle Scholar
  5. 5.
    Piper RD, Pitt-Hyde ML, Anderson LA et al (1998) Leukocyte activation and flow behavior in rat skeletal muscle in sepsis. Am J Respir Crit Care Med 157: 129–134PubMedGoogle Scholar
  6. 6.
    Piper RD, Pitt-Hyde M, Li F et al (1996) Microcirculatory changes in rat skeletal muscle in sepsis. Am J Respir Crit Care Med 154: 931–937PubMedGoogle Scholar
  7. 7.
    Farquhar I, Martin CM, Lam C et al (1996) Decreased capillary density in vivo in bowel mucosa of rats with normotensive sepsis. J Surg Res 61: 190–196PubMedCrossRefGoogle Scholar
  8. 8.
    McCuskey RS, Urbaschek R, Urbaschek B (1996) The microcirculation during endotoxemia. Cardiovasc Res 32: 752–763PubMedGoogle Scholar
  9. 9.
    Drazenovic R, Samsel RW, Wylam ME et al (1992) Regulation of perfused capillary density in canine intestinal mucosa during endotoxemia. J Appl Physiol 72: 259–265PubMedCrossRefGoogle Scholar
  10. 10.
    Walley KR (1996). Heterogeneity of oxygen delivery impairs oxygen extraction by peripheral tissues: theory. J Appl Physiol 81: 885–894PubMedGoogle Scholar
  11. 11.
    Humer MF, Phang PT, Friesen BP et al (1996) Heterogeneity of gut capillary transit times and impaired gut oxygen extraction in endotoxemic pigs. J Appl Physiol 81: 895–904PubMedGoogle Scholar
  12. 12.
    Ince C, Sinaasappel M (1999) Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 27: 1369–1377PubMedCrossRefGoogle Scholar
  13. 13.
    Zuurbier CJ, van Iterson M, Ince C (1999) Functional heterogeneity of oxygen supply-consumption ratio in the heart. Cardiovasc Res 44: 488–497PubMedCrossRefGoogle Scholar
  14. 14.
    Vicaut E, Hou X, Payen D et al (1991) Acute effects of tumor necrosis factor on the microcirculation in rat cremaster muscle. J Clin Invest 87: 1537–1540PubMedCrossRefGoogle Scholar
  15. 15.
    Groeneveld AB, Hartemink KJ, de Groot MC et al (1999) Circulating endothelin and nitrate-nitrite relate to hemodynamic and metabolic variables in human septic shock. Shock 11: 160–166PubMedCrossRefGoogle Scholar
  16. 16.
    Hollenberg SM, Broussard M, Osman J et al (2000) Increased microvascular reactivity and improved mortality in septic mice lacking inducible nitric oxide synthase. Circ Res 86: 774–778PubMedGoogle Scholar
  17. 17.
    Diaz NL, Finol HJ, Torres SH et al (1998) Histochemical and ultrastructural study of skeletal muscle in patients with sepsis and multiple organ failure syndrome ( MOFS ). Histol Histopathol 13: 121–128Google Scholar
  18. 18.
    Schneider J (1993) Fibrin-specific lysis of microthrombosis in endotoxemic rats by saruplase. Thromb Res 72: 71–82PubMedCrossRefGoogle Scholar
  19. 19.
    Bernard GR, Vincent J-L, Laterre PF et al (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344: 699–709PubMedCrossRefGoogle Scholar
  20. 20.
    Drost EM, Kassabian G, Meiselman HJ et al (1999) Increased rigidity and priming of polymorphonuclear leukocytes in sepsis. Am J Respir Crit Care Med 159: 1696–1702PubMedGoogle Scholar
  21. 21.
    Astiz ME, DeGent GE, Lin RY et al (1995) Microvascular function and rheologic changes in hyperdynamic sepsis. Crit Care Med 23: 265–271PubMedCrossRefGoogle Scholar
  22. 22.
    Kirschenbaum LA, Astiz ME, Rackow EC et al (2000) Microvascular response in patients with cardiogenic shock. Crit Care Med 28: 1290–1294PubMedCrossRefGoogle Scholar
  23. 23.
    Eichelbronner O, Sielenkamper A, Cepinskas G et al (2000) Endotoxin promotes adhesion of human erythrocytes to human vascular endothelial cells under conditions of flow. Crit Care Med 28: 1865–1870PubMedCrossRefGoogle Scholar
  24. 24.
    D orio V, Mendes P, Carlier P et al (1991) Lung fluid dynamics and supply dependency of oxygen uptake during experimental endotoxic shock and volume resuscitation. Crit Care Med 19: 955–962PubMedCrossRefGoogle Scholar
  25. 25.
    De Backer D, Dubois Mt (2001) Assessment of the microcirculatory flow in patients in the intensive care unit. Curr Opin Crit Care 7: 200–203PubMedCrossRefGoogle Scholar
  26. 26.
    Freedlander SO, Lenhart CH (1922) Clinical observations on the capillary circulation. Arch Intern Med 29: 12–32CrossRefGoogle Scholar
  27. 27.
    Young JD, Cameron EM (1995) Dynamics of skin blood flow in human sepsis. Intensive Care Med 21: 669–674PubMedCrossRefGoogle Scholar
  28. 28.
    Nevière R, Mathieu D, Chagnon JL et al (1996) Skeletal muscle microvascular blood flow and oxygen transport in patients with severe sepsis. Am J Respir Crit Care Med 153: 191–195PubMedGoogle Scholar
  29. 29.
    Groner W, Winkelman JW, Harris AG et al (1999) Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med 5: 1209–1212PubMedCrossRefGoogle Scholar
  30. 30.
    Mathura KR, Vollebregt KC, Boer K et al (2001) Comparison of OPS imaging and conventional capillary microscopy to study the human microcirculation. J Appl Physiol 91: 74–78PubMedGoogle Scholar
  31. 31.
    Langer S, von Dobschuetz E, Harris AG et al (2000) Validation of the orthogonal polarization spectral imaging technique on solid organs. In Messmer K (ed): Orthogonal polarization spectral imaging. Basel, Karger, pp 32–46CrossRefGoogle Scholar
  32. 32.
    Laemmel E, Tadayoni R, Sinitsina I et al (2000) Using orthogonal polarization spectral imaging for the experimental study of microcirculation: comparison with intravital microscopy. In Messmer K (ed): Orthogonal Polarization Spectral Imaging. Basel, Karger, pp 50–60CrossRefGoogle Scholar
  33. 33.
    Harris AG, Sinitsina I, Messmer K (2000) The Cytoscan(TM) Model E-II, a new reflectance microscope for intravital microscopy: Comparison with the standard fluorescence method. J Vase Res 37: 469–476Google Scholar
  34. 34.
    De Backer D, Creteur J, Vincent J-L (2000) Microcirculatory alterations in cardiogenic and septic shock. Intensive Care Med 26: 5334 (Abstract)Google Scholar
  35. 35.
    De Backer D, Preiser J-C, Creteur Jet al (2001) Alterations in microvascular blood flow in septic patients can be reversed by acetylcholine. Am J Respir Crit Care Med 163: A137 (Abstract)Google Scholar
  36. 36.
    Nakagawa Y, Weil MH, Tang W et al (1998) Sublingual capnometry for diagnosis and quantitation of circulatory shock. Am J Respir Crit Care Med 157: 1838–1843PubMedGoogle Scholar
  37. 37.
    Weil MH, Nakagawa Y, Tang W et al (1999) Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock. Crit Care Med 27: 1225–1229PubMedCrossRefGoogle Scholar
  38. 38.
    Povoas HE Weil MH, Tang W et al (2000) Comparisons between sublingual and gastric tonometry during hemorrhagic shock. Chest 118: 1127–1132PubMedCrossRefGoogle Scholar
  39. 39.
    Jin X, Weil MH, Sun S et al (1998) Decreases in organ blood flows associated with increases in sublingual PCO2 during hemorrhagic shock. J Appl Physiol 85: 2360–2364PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 2002

Authors and Affiliations

  • D. De Backer
  • M.-J. Dubois
  • J. Creteur

There are no affiliations available

Personalised recommendations