Advertisement

Alveolar Epithelium in Host Defence: Cytokine Production

Abstract

Infection of the respiratory system is a frequent cause of morbidity and mortality world-wide [1]. Respiratory tract infection, including croup, tracheobronchitis, bronchiolitis and pneumonia, are significant clinical problems. The increasing number of multidrug-resistant microbes has made the treatment of these infections much more difficult [1]. To further improve therapies for respiratory infection, we need to learn more about the host defence in the lung.

Keywords

A549 Cell Acute Lung Injury Host Defence Idiopathic Pulmonary Fibrosis Alveolar Epithelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Standiford TJ, Huffnagle GB (1997) Cytokines in host defense against pneumonia. J Invest Med 45: 335–345Google Scholar
  2. 2.
    Baggiolini M, Dewald B, Moser B (1997) Human chemokines: an update. Annu Rev Immunol 15: 675–705PubMedCrossRefGoogle Scholar
  3. 3.
    Baggiolini M (1998) Chemokines and leukocyte traffic. Nature 392: 565–568PubMedCrossRefGoogle Scholar
  4. 4.
    Simon RH, Paine III R (1995) Participation of pulmonary alveolar epithelial cells in lung inflammation. J Lab Clin Med 126: 108–118PubMedGoogle Scholar
  5. 5.
    Standiford TJ, Strieter RM, Greenberger MJ, Kunkel SL (1996) Expression and regulation of chemokines in acute bacterial pneumonia. Biol Signals 5: 203–208PubMedCrossRefGoogle Scholar
  6. 6.
    Baggiolini M, Dewald B, Moser B (1994) Interleukin-8 and related chemotactic cytokines-CXC and CC chemokines. Adv Immunol 55: 97–179PubMedCrossRefGoogle Scholar
  7. 7.
    Wolpe SD, Cerami A (1989) Macrophage inflammatory proteins 1 and 2: members of a novel superfamily of cytokines. FASEB J 3: 2565–2573PubMedGoogle Scholar
  8. 8.
    McRitchie DI, Isowa N, Edelson JD et al (2000) Production of tumour necrosis factor alpha by primary cultured rat alveolar epithelial cells. Cytokine 12: 644–654PubMedCrossRefGoogle Scholar
  9. 9.
    Standiford T, Kunkel SL, Basha MA et al (1990) Interleukin-8 gene expression by a pulmonary epithelial cell line. A model for cytokine networks in the lung. J Clin Invest 86: 1945–1953PubMedCrossRefGoogle Scholar
  10. 10.
    Xavier AM, Isowa N, Cai L, et al (1999) Tumor necrosis factor-alpha mediates lipopolysaccharide-induced macrophage inflammatory protein-2 release from alveolar epithelial cells. Autoregulation in host defense. Am J Respir Cell Mol Biol 21: 510–520PubMedGoogle Scholar
  11. 11.
    Standiford TJ, Kunkel SL, Phan SH et al (1991) Alveolar macrophage-derived cytokines induce monocyte chemoattractant protein-1 expression from human pulmonary type II-like epithelial cells. J Biol Chem 266: 9912–9918PubMedGoogle Scholar
  12. 12.
    Paine III R, Rolfe MW, Standiford TJ et al (1993) MCP-1 expression by rat type II alveolar epithelial cells in primary culture. J Immunol 150: 4561–4570PubMedGoogle Scholar
  13. 13.
    VanOtteren GM, Strieter RM, Kunkel SL et al (1995) Compartmentalized expression of RANTES in a murine model of endotoxemia. J Immunol 154: 1900–1908PubMedGoogle Scholar
  14. 14.
    Liu M, Slutsky AS (1997) Anti-inflammatory therapies: application of molecular biology techniques in intensive care medicine. Inten Care Med 23: 718–731CrossRefGoogle Scholar
  15. 15.
    Fisher CJ, Jr., Dhainaut JF, Opal SM et al (1994) Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-lra Sepsis Syndrome Study Group. JAMA 271: 1836–1843PubMedCrossRefGoogle Scholar
  16. 16.
    Fisher CJ, Jr., Slotman GJ, Opal SM et al (1994) Initial evaluation of human recombinant interleukin-1 receptor antagonist in the treatment of sepsis syndrome: a randomized, open-label, placebo-controlled multicenter trial. The IL- IRA Sepsis Syndrome Study Group. Crit Care Med 22: 12–21PubMedGoogle Scholar
  17. 17.
    Standiford TJ, Kunkel SL, Greenberger MJ et al (1996) Expression and regulation of chemokines in bacterial pneumonia. J Leukoc Biol 59: 24–28PubMedGoogle Scholar
  18. 18.
    Baggiolini M, Moser B (1997) Blocking chemokine receptors. J Exp Med 186: 1189–1191PubMedCrossRefGoogle Scholar
  19. 19.
    Bazzoni F, Beutler B (1996) The tumor necrosis factor ligand and receptor families. New Eng J Med 334: 1717–1725PubMedCrossRefGoogle Scholar
  20. 20.
    Peppel K, Crawford D, Beutler B (1991) A tumor necrosis factor ( TNF) receptor-IgG heavy chain chimeric protein as a bivalent antagonist of TNF activity. J Exp Med 174: 1483–1489PubMedCrossRefGoogle Scholar
  21. 21.
    Larner AC, Finbloom DS (1995) Protein tyrosine phosphorylation as a mechanism which regulates cytokine activation of early response genes. Biochim Biophys Acta 1266: 278–287PubMedCrossRefGoogle Scholar
  22. 22.
    Lee JC, Laydon JT, McDonnell PC et al (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372: 739–745PubMedCrossRefGoogle Scholar
  23. 23.
    Beyaert R, Cuenda A, Vanden Berghe W et al (1996) The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor. EMBO J 15: 1914–1923PubMedGoogle Scholar
  24. 24.
    Collart MA, Baeuerle P, Vassalli P (1990) Regulation of tumor necrosis factor alpha transcription in macrophages: involvement of four kappa B-like motifs and of constitutive and inducible forms of NF-kappa B. Mol Cell Biol 10: 1498–506PubMedGoogle Scholar
  25. 25.
    Han J, Brown T, Beutler B (1990) Endotoxin-responsive sequences control cachectin/TNF biosynthesis at the translational level. J Exp Med 171: 465–475PubMedCrossRefGoogle Scholar
  26. 26.
    Shaw G, Kamen R (1986) A conserved AU sequence from the 3’ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46: 659–667PubMedCrossRefGoogle Scholar
  27. 27.
    Baggiolini M, Walz A, Kunkel SL (1989) Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. J Clin Invest 84: 1045–1049PubMedCrossRefGoogle Scholar
  28. 28.
    Carre PC, Mortenson RL, King TE, Jr. et al (1991) Increased expression of the interleukin-8 gene by alveolar macrophages in idiopathic pulmonary fibrosis. A potential mechanism for the recruitment and activation of neutrophils in lung fibrosis. J Clin Invest 88: 1802–1810PubMedCrossRefGoogle Scholar
  29. 29.
    Miller EJ, Cohen AB, Nagao S et al (1992) Elevated levels of NAP-1/interleukin-8 are present in the airspaces of patients with the adult respiratory distress syndrome and are associated with increased mortality. Am Rev Respir Dis 146: 427–432PubMedGoogle Scholar
  30. 30.
    Broaddus VC, Hebert CA, Vitangcol RV et al (1992) Interleukin-8 is a major neutrophil chemotactic factor in pleural liquid of patients with empyema. Am Rev Respir Dis 146: 825–830PubMedGoogle Scholar
  31. 31.
    Sekido N, Mukaida N, Harada A et al (1993) Prevention of lung reperfusion injury in rabbits by a monoclonal antibody against interleukin-8. Nature 365: 654–657PubMedCrossRefGoogle Scholar
  32. 32.
    Pechkovsky DV, Zissel G, Ziegenhagen MW et al (2000) Effect of proinflammatory cytokines on interleukin-8 mRNA expression and protein production by isolated human alveolar epithelial cells type II in primary culture. Eur Cytokine Netw 11: 618–625PubMedGoogle Scholar
  33. 33.
    Wolpe SD, Davatelis G, Sherry B et al (1988) Macrophages secrete a novel heparin-binding protein with inflammatory and neutrophil chemokinetic properties. J Exp Med 167: 570–581PubMedCrossRefGoogle Scholar
  34. 34.
    Shanley TP, Schmal H, Friedl HP et al (1995) Role of macrophage inflammatory protein-1 alpha (MIP-1 alpha) in acute lung injury in rats. J Immunol 154: 4793–4802PubMedGoogle Scholar
  35. 35.
    Feng L, Xia Y, Yoshimura T, Wilson CB (1995) Modulation of neutrophil influx in glomerulo-nephritis in the rat with anti-macrophage inflammatory protein-2 (MIP-2) antibody. J Clin Invest 95: 1009–1017PubMedCrossRefGoogle Scholar
  36. 36.
    Driscoll KE, Hassenbein DG, Howard BW et al (1995) Cloning, expression, and functional characterization of rat MIP-2: a neutrophil chemoattractant and epithelial cell mitogen. J Leukoc Biol 58: 359–364PubMedGoogle Scholar
  37. 37.
    Gupta S, Feng L, Yoshimura T et al (1996) Intra-alveolar macrophage-inflammatory peptide 2 induces rapid neutrophil localization in the lung. Am J Respir Cell Mol Biol 15: 656–663PubMedGoogle Scholar
  38. 38.
    Zhang H, Kim YK, Govindarajan A et al (1999) Effect of adrenoreceptors on endotoxin-induced cytokines and lipid peroxidation in lung explants. Am J Respir Crit Care Med 160: 1703–1710PubMedGoogle Scholar
  39. 39.
    Foley R, Driscoll K, Wan Y et al(1996) Adenoviral gene transfer of macrophage inflammatory protein-2 in rat lung. Am J Pathol 149: 1395–1403PubMedGoogle Scholar
  40. 40.
    Greenberger MJ, Strieter RM, Kunkel SL et al (1996) Neutralization of macrophage inflammatory protein-2 attenuates neutrophil recruitment and bacterial clearance in murine Klebsiella pneumonia. J Infect Dis 173: 159–165PubMedCrossRefGoogle Scholar
  41. 41.
    Lakshminarayanan V, Drab-Weiss EA, Roebuck KA (1998) H2O2 and tumor necrosis factor-alpha induce differential binding of the redox-responsive transcription factors AP-1 and NF-kappaB to the interleukin-8 promoter in endothelial and epithelial cells. J Biol Chem 273: 32670–32678PubMedCrossRefGoogle Scholar
  42. 42.
    Brasier AR, Jamaluddin M, Casola A et al (1998) A promoter recruitment mechanism for tumor necrosis factor-alpha-induced interleukin-8 transcription in type II pulmonary epithelial cells. Dependence on nuclear abundance of Rel A, NF-kappaB 1, and c-Rel transcription factors. J Biol Chem 273: 3551–3561PubMedCrossRefGoogle Scholar
  43. 43.
    Fiedler MA, Wernke-Dollries K, Stark JM (1998) Inhibition of TNF-alpha-induced NF-kappaB activation and IL-8 release in A549 cells with the proteasome inhibitor MG-132. Am J Respir Cell Mol Biol 19: 259–268PubMedGoogle Scholar
  44. 44.
    Standiford TJ, Kunkel SL, Basha MA et al (1990) Interleukin-8 gene expression by a pulmonary epithelial cell line. A model for cytokine networks in the lung. J Clin Invest 86: 1945–1953PubMedCrossRefGoogle Scholar
  45. 45.
    Bittleman DB, Casale TB (1995) Interleukin-8 mediates interleukin-1 alpha-induced neutrophil transcellular migration. Am J Respir Cell Mol Biol 13: 323–329PubMedGoogle Scholar
  46. 46.
    Patel JA, Jiang Z, Nakajima N, Kunimoto M (1998) Autocrine regulation of interleukin-8 by interleukin-lalpha in respiratory syncytial virus-infected pulmonary epithelial cells in vitro. Immunology 95: 501–506PubMedCrossRefGoogle Scholar
  47. 47.
    Schwarz YA, Amin RS, Stark JM et al (1999) Interleukin-1 receptor antagonist inhibits interleukin-8 expression in A549 respiratory epithelial cells infected in vitro with a replication-deficient recombinant adenovirus vector. Am J Respir Cell Mol Biol 21:388–394PubMedGoogle Scholar
  48. 48.
    Mori N, Oishi K, Sar B et al (1999) Essential role of transcription factor nuclear factor-kappaB in regulation of interleukin-8 gene expression by nitrite reductase from Pseudomonas aeruginosa in respiratory epithelial cells. Infect Immun 67: 3872–3878PubMedGoogle Scholar
  49. 49.
    Simeonova PP, Luster MI (1996) Asbestos induction of nuclear transcription factors and interleukin-8 gene regulation. Am J Respir Cell Mol Biol 15: 787–795PubMedGoogle Scholar
  50. 50.
    Mastronarde JG, Monick MM, Mukaida N et al (1998) Activator protein-1 is the preferred transcription factor for cooperative interaction with nuclear factor-kappaB in respiratory syncytial virus-induced interleukin-8 gene expression in airway epithelium. J Infect Dis 177: 1275–1281PubMedCrossRefGoogle Scholar
  51. 51.
    Kito H, Chen EL, Wang X et al (2000) Role of mitogen-activated protein kinases in pulmonary endothelial cells exposed to cyclic strain. J Appl Physiol 89: 2391–2400PubMedGoogle Scholar
  52. 52.
    Quinn D, Tager A, Joseph PM et al (1999) Stretch-induced mitogen-activated protein kinase activation and interleukin-8 production in type II alveolar cells. Chest 116: 89S - 90SPubMedCrossRefGoogle Scholar
  53. 53.
    Roberts ML, Cowsert LM (1998) Interleukin-1. beta and reactive oxygen species mediate activation of c-Jun NH2-terminal kinases, in human epithelial cells, by two independent pathways. Biochem Biophys Res Commun 251: 166–172PubMedCrossRefGoogle Scholar
  54. 54.
    Monick M, Staber J, Thomas K, Hunninghake G (2001) Respiratory syncytial virus infection results in activation of multiple protein kinase C isoforms leading to activation of mitogen-activated protein kinase. J Immunol 166: 2681–2687PubMedGoogle Scholar
  55. 55.
    Chen W, Monick MM, Carter AB, Hunninghake GW (2000) Activation of ERK2 by respiratory syncytial virus in A549 cells is linked to the production of interleukin 8. Exp Lung Res 26: 13–26PubMedCrossRefGoogle Scholar
  56. 56.
    Wondering RS, Ghaffar A, Mayer EP (1996) Lipopolysaccharide-induced suppression of phagocytosis: Effects on the phagocytic machinery. Immunopharmacol Immunotoxicol 18: 267–289CrossRefGoogle Scholar
  57. 57.
    Shinji H, Kaiho S, Nakano T, Yoshida T (1991) Reorganization of microfilaments in macrophages after LPS stimulation. Exp Cell Res 193: 127–133PubMedCrossRefGoogle Scholar
  58. 58.
    Doherty DE, Downey GP, Schwab III B, Elson E, Worthen GS (1994) Lipopolysaccharide-induced monocyte retention in the lung: role of monocyte stiffness, actin assembly, and CD18-dependent adherence. J Immunol 153: 241–255PubMedGoogle Scholar
  59. 59.
    Howard TH, Wang D, Berkow RL (1990) Lipopolysaccharide modulates chemotactic peptide-induced actin polymerization in neutrophils. J Leukoc Biol 47: 13–24PubMedGoogle Scholar
  60. 60.
    Isowa N, Xavier AM, Dziak E et al (1999) LPS-induced depolymerization of cytoskeleton and its role in TNF-alpha production by rat pneumocytes. Am J Physiol 277: L606 - L615PubMedGoogle Scholar
  61. 61.
    Isowa N, Liu M (2001) Role of LPS-induced microfilament depolymerization in MIP-2 production from rat pneumocytes. Am J Physiol Lung Cell Mol Physiol 280: L762–770PubMedGoogle Scholar
  62. 62.
    Shinji H, Akagawa KS, Yoshida T (1993) Cytochalasin D inhibits lipopolysaccharide-induced tumor necrosis factor production in macrophages. J Leukoc Biol 54: 336–342PubMedGoogle Scholar
  63. 63.
    Bubb MR, Senderowicz AM, Sausville EA et al (1994) Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J Biol Chem 269: 14869–14871PubMedGoogle Scholar
  64. 64.
    Mourgeon E, Isowa N, Keshavjee S et al (2000) Mechanical stretch stimulates macrophage inflammatory protein-2 secretion from fetal rat lung cells. Am J Physiol Lung Cell Mol Physiol 279: L699–706PubMedGoogle Scholar
  65. 65.
    Bloom GS, Goldstein LS (1998) Cruising along microtubule highways: how membranes move through the secretory pathway. J Cell Biol 140: 1277–1280PubMedCrossRefGoogle Scholar
  66. 66.
    Valentijn KM, Gumkowski FD, Jamieson JD (1999) The subapical actin cytoskeleton regulates secretion and membrane retrieval in pancreatic acinar cells. J Cell Sci 112: 81–96PubMedGoogle Scholar
  67. 67.
    Cole NB, Lippincott-Schwartz J (1995) Organization of organdies and membrane traffic by microtubules. Curr Opin Cell Biol 7: 55–64PubMedCrossRefGoogle Scholar
  68. 68.
    Saraste J, Kuismanen E (1992) Pathways of protein sorting and membrane traffic between the rough endoplasmic reticulum and the Golgi complex. Semin Cell Biol 3: 343–55.PubMedCrossRefGoogle Scholar
  69. 69.
    Lippincott-Schwartz J (1998) Cytoskeletal proteins and Golgi dynamics. Curr Opin Cell Biol 10: 52–59PubMedCrossRefGoogle Scholar
  70. 70.
    Muesch A, Hartmann E, Rohde K et al (1990) A novel pathway for secretory proteins? Trends Biochem Sci 15: 86–88PubMedCrossRefGoogle Scholar
  71. 71.
    Isowa N, Keshavjee SH, Liu M (2000) Role of microtubules in LPS-induced macrophage inflammatory protein-2 production from rat pneumocytes. Am J Physiol:In press.Google Scholar
  72. 72.
    Allen JN, Moore SA, Liao Z, Wewers MD (1997) Changes in mononuclear phagocyte microtubules after endotoxin stimulation. I. Changes in microtubule stability. Am J Respir Cell Mol Biol 16: 119–126PubMedGoogle Scholar
  73. 73.
    Cole NB, Ellenberg J, Song Jet al (1998) Retrograde transport of Golgi-localized proteins to the ER. J Cell Biol 140: 1–15PubMedCrossRefGoogle Scholar
  74. 74.
    Lippincott-Schwartz J, Donaldson JG, Schweizer A et al (1990) Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway. Cell 60: 821–836PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 2002

Authors and Affiliations

  • M. Liu

There are no affiliations available

Personalised recommendations