Sepsis and Clinical Trials: a New Era in Anti-Sepsis Therapies

  • J.-L. Vincent


Over the last decade, we have made great progress in our knowledge and understanding of the pathophysiolgy of sepsis, the mediators involved, and the underlying mechanisms, and yet, until very recently, little advance had been made in the field of sepsis therapeutics. Achievements in basic science and cellular research have not been matched by clinical success, and mortality rates from this disease process have remained virtually unaltered over the past 50 years [1]. Indeed, despite the development of many dozens of new so-called immunomodulatory agents, poor results from clinical trials mean that the treatment of sepsis remains antibiotic therapy, source removal, and organ support. In this chapter we will briefly discuss the reasons behind these ‘failed’ clinical trials before focussing on the recent and exciting results of activated protein C (APC), a drug aimed at the coagulation system, which has been shown to improve mortality rates in patients with severe sepsis.


Severe Sepsis Systemic Inflammatory Response Syndrome Drotrecogin Alfa Sepsis Trial Severe Systemic Inflammatory Response Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Friedman G, Silva E, Vincent JL (1998) Has the mortality of septic shock changed with time? Crit Care Med 26: 2078–2086PubMedCrossRefGoogle Scholar
  2. 2.
    Bone RC (1996) Why sepsis trials fail. JAMA 276: 565–566PubMedCrossRefGoogle Scholar
  3. 3.
    Abraham E (1999) Why immunomodulatory therapies have not worked in sepsis. Intensive Care Med 25: 556–566PubMedCrossRefGoogle Scholar
  4. 4.
    Cohen J (1999) Adjunctive therapy in sepsis: a critical analysis of the clinical trial programme. Br Med Bull 55: 212–225PubMedCrossRefGoogle Scholar
  5. 5.
    Dellinger RP (1999) Severe sepsis trials: why have they failed? Minerva Anestesiol 65: 340–345PubMedGoogle Scholar
  6. 6.
    Warren HS, Amato SF, Fitting C, Black KM, Loiselle PM, Pasternack MS, Cavaillon JM (1993) Assessment of ability of murine and human anti-lipid A monoclonal antibodies to bind and neutralize lipopolysaccharide. J Exp Med 177: 89–97PubMedCrossRefGoogle Scholar
  7. 7.
    Volk HD, Reinke P, Krausch D, Zuckermann H, Asadullah K, Müller JM, Döcke WD, Kox WJ (1996) Monocyte deactivation–rationale for a new therapeutic strategy in sepsis. Intensive Care Med 22: 5474–5481CrossRefGoogle Scholar
  8. 8.
    Fekade D, Knox K, Hussein K, Melka A, Lalloo DG, Coxon RE, Warrell DA (1996) Prevention of Jarisch-Herxheimer reactions by treatment with antibodies against tumor necrosis factor a. N Engl J Med 335: 311–315PubMedCrossRefGoogle Scholar
  9. 9.
    Clark MA, Plank LD, Connolly AB, Streat SJ, Hill AA, Gupta R, Monk DN, Shenkin A, Hill GL (1998) Effect of a chimeric antibody to tumor necrosis factor-a on cytokine and physiologic responses in patients with severe sepsis–a randomized, clinical trial. Crit Care Med 26: 1650–1659PubMedCrossRefGoogle Scholar
  10. 10.
    Appoloni O, Dupont E, Andrien M, Duchateau J, Vincent JL (2001) Association of TNF2, a TNFa promoter polymorphism, with plasma TNFa levels and mortality in septic shock. Am J Med 110: 486–488PubMedCrossRefGoogle Scholar
  11. 11.
    Vincent JL (1997) Dear Sirs, I’m sorry to say that I don’t like you.. Crit Care Med 25: 372–374PubMedCrossRefGoogle Scholar
  12. 12.
    Damas P, Carnivet JL, De Groote D, Vrindts Y, Albert A, Franchimont P, Lamy M (1997) Sepsis and serum cytokine concentrations. Crit Care Med 25: 405–412PubMedCrossRefGoogle Scholar
  13. 13.
    Greenman RL, Schein RMH, Martin MA, Wenzel RP, Maclntyre NR, Emmanuel G, Chmel H, Kohler RB, McCarthy M, Plouffe J, Russell JA (1991) A controlled clinical trial of E5 murine monoclonal IgM antibody to endotoxin in the treatment of gram-negative sepsis. JAMA 266: 1097–1102PubMedCrossRefGoogle Scholar
  14. 14.
    Reinhart K, Wiegand-Löhnert C, Grimminger F, Kaul M, Withington S, Treacher D, Eckert J, Willatts S, Bouza C, Krausch D, Stockenhuber F, Eiselstein J, Daum L, Kempeni J (1996) Assessment of the safety and efficacy of the monoclonal anti-tumor necrosis factor antibody fragment, MAK195F, in patients with sepsis and septic shock: a multicenter, randomized, placebo-controlled, dose ranging study. Crit Care Med 24: 733–742PubMedCrossRefGoogle Scholar
  15. 15.
    Abraham E, Glauser MP, Butler T, Garbino J, Gelmont D, Laterre PF, Kudsk K, Bruining HA, Otto C, Tobin E, Zwingelstein C, Lesslauer W, Leighton A, Ro 45–2081 Study Group. (1997) p55 tumor necrosis factor receptor fusion protein in the treatment of patients with severe sepsis and septic shock. JAMA 277: 1531–1538Google Scholar
  16. 16.
    Fisher CJ, Dhainaut JF, Opal SM, Pribble JP, Balk RA, Slotman GJ, Iberti TJ, Rackow EC, Shapiro MJ, Greenman RL, Reines HD, Shelly MP, Thompson BW, LaBrecque JF, Catalano MA, Knaus WA, Sadoff JC (1994) Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. JAMA 271: 1836–1843PubMedCrossRefGoogle Scholar
  17. 17.
    Dhainaut JF, Tenaillon A, Le Tulzo Y, Schlemmer B, Solet JP, Wolff M, Holzapfel L, Zeni F, Dreyfuss D, Mira JP, et al (1994) Platelet-activating factor receptor antagonist BN 52021 in the treatment of severe sepsis: a randomized, double-blind, placebo-controlled, multicenter clinical trial. BN 52021 Sepsis Study Group. Crit Care Med 22: 1720–1728PubMedGoogle Scholar
  18. 18.
    Fein AM, Bernard GR, Criner GJ, Fletcher EC, Good JT, Knaus WA, Levy H, Matuschak GM, Shanies HM, Taylor RW Jr, Rodell TC (1997) Treatment of severe systemic inflammatory response syndrome and sepsis with a novel bradykinin antagonist, deltibant (CP-0127). JAMA 277: 482–487PubMedCrossRefGoogle Scholar
  19. 19.
    Baudo F, Caimi TM, deCataldo E, Ravizza A, Arlati S, Casella G, Carugo D, Palareti G, Legnani C, Ridolfi L, Rossi R, D’Angelo A, Crippa L, Giudica D, Gallioli G, Wolfler A, Calori G (1998) Antithrombin III (ATIII) replacement therapy in patients with sepsis and/or postsurgical complications: a controlled, double-blind, randomized, multicenter study. Intensive Care Med 24: 336–342PubMedCrossRefGoogle Scholar
  20. 20.
    Matson A, Soni N, Sheldon J (1991) C-reactive protein as a diagnostic test of sepsis in the critically ill. Anaesth Intensive Care 19: 182–186PubMedGoogle Scholar
  21. 21.
    Ugarte H, Silva E, Mercan D, Mendonça A, Vincent JL (1999) Procalcitonin as a marker of infection in the intensive care unit. Crit Care Med 27: 498–504PubMedCrossRefGoogle Scholar
  22. 22.
    Reinhart K, RAMSES Study Group (1998). Treatment of severe sepsis in patients with highly elevated IL-6 levels with anti-TNF monoclonal antibody MAK 195F: The RAMSES study (abstract). Crit Care 2: P18Google Scholar
  23. 23.
    Panacek EA, Marshall J, Fischkoff S, Barchuk W, Leah T (2000) Neutralization of TNF by a monoclonal antibody improves survival and reduces organ dysfunction in human sepsis: results of the MONARCS trial (abstract). Chest 118: 88SGoogle Scholar
  24. 24.
    Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, Steingrub JS, Garber GE, Helterbrand JD, Ely EW, Fisher CJ, (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344: 699–709PubMedCrossRefGoogle Scholar
  25. 25.
    Marshall JC (2001) Inflammation, coagulopathy, and the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med 29: S99 - S106PubMedCrossRefGoogle Scholar
  26. 26.
    Grinnell BW, Joyce D (2001) Recombinant human activated protein C: a system modulator of vascular function for treatment of severe sepsis. Crit Care Med 29: S53 - S61PubMedCrossRefGoogle Scholar
  27. 27.
    Fourrier F, Chopin C, Goudemand J, Hendrycx S, Caron C, Rime A, Marey A, Lestavel P (1992) Septic shock, multiple organ failure, and disseminated intravascular coagulation. Compared patterns of antithrombin III, protein C, and protein S deficiencies. Chest 101: 816–823PubMedCrossRefGoogle Scholar
  28. 28.
    Fijnvandraat K, Derkx B, Peters M, Bijlmer R, Sturk A, Prins MH, Van Deventer SJ, Cate JW ten (1995) Coagulation activation and tissue necrosis in meningococcal septic shock: severely reduced protein C levels predict a high mortality. Thromb Haemost 73: 15–20PubMedGoogle Scholar
  29. 29.
    Fisher CJ, Yan SB (2000) Protein C levels as a prognostic indicator of outcome in sepsis and related diseases. Crit Care Med 28: S49 - S56PubMedCrossRefGoogle Scholar
  30. 30.
    Grey ST, Tsuchida A, Hau H, Orthner CL, Salem HH, Hancock WW (1994) Selective inhibitory effects of the anticoagulant activated protein C on the responses of human mononuclear phagocytes to LPS, IFN-gamma, or phorbol ester. J Immunol 153: 3664–3672PubMedGoogle Scholar
  31. 31.
    Schmidt-Supprian M, Murphy C, While B, Lawler M, Kapurniotu A, Voelter W, Smith O, Bernhagen J (2000) Activated protein C inhibits tumor necrosis factor and macrophage migration inhibitory factor production in monocytes. Eur Cytokine Netw 11: 407–413PubMedGoogle Scholar
  32. 32.
    Murakami K, Okajima K, Uchiba M, Johno M, Nakagaki T, Okabe H, Takatsuki K (1997) Activated protein C prevents LPS-induced pulmonary vascular injury by inhibiting cytokine production. Am J Physiol 272: L197 - L202PubMedGoogle Scholar
  33. 33.
    White B, Schmidt M, Murphy C, Livingstone W, O’Toole D, Lawler M, O’Neill L, Kelleher D, Schwarz HP, Smith OP (2000) Activated protein C inhibits lipopolysaccharide-induced nuclear translocation of nuclear factor kappaB (NF-kappaB) and tumour necrosis factor alpha (TNF-alpha) production in the THP-1 monocytic cell line. Br J Haematol 110: 130–134PubMedCrossRefGoogle Scholar
  34. 34.
    Joyce DE, Gelbert L, Ciaccia A, DeHoff B, Grinnell BW (2001) Gene expression profile of antithrombotic protein C defines new mechanisms modulating inflammation and apoptosis. J Biol Chem 276: 11199–11203PubMedCrossRefGoogle Scholar
  35. 35.
    Bernard GR, Hartman DL, Helterbrand JD, et al. (1999) Recombinant human activated protein C produces a trend toward improvement in morbidity and 28 day survival in patients with severe sepsis (abstract). Crit Care Med 27: S4CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 2002

Authors and Affiliations

  • J.-L. Vincent

There are no affiliations available

Personalised recommendations