Microbial Translocation: from Myth to Mechanism

  • J. C. Marshall
Conference paper


The microbial flora of the normal human gastrointestinal (GI) tract is enormously complex. The number of organisms that normally reside along the mucosal surface stretching from the oropharynx to the rectum exceeds the total number of cells in the human body by a factor of ten [1]. Careful studies of the nature of this flora have shown that it consists of upwards of 600 separate microbial species, each tending to associate with a specific anatomical niche in the GI tract, yet the total population is remarkably stable over time [2]. Under normal circumstances, this flora exists in a symbiotic relationship with the adjacent epithelial cells of the GI mucosa, and remains located on the luminal surface where it prevents colonization by potentially pathogenic organisms [3] and even modulates the immunological activity of epithelial cells of the host [4]. However a variety of pathological conditions can disrupt the relationship between the indigenous flora of the GI tract and the gut epithelium, and organisms can gain entrance to deeper tissues; this process has been termed “bacterial (or more appropriately “microbial”) translocation”.


Mesenteric Lymph Node Bacterial Translocation Abdominal Aortic Aneurysm Repair Microbial Translocation Selective Decontamination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Med 31: 107–133Google Scholar
  2. 2.
    Lee A (1985) Neglected niches. The microbial ecology of the gastrointestinal tract. Adv Microbial Ecol 8: 115–162Google Scholar
  3. 3.
    Van Der Waaij D (1989) The ecology of the human intestine and its consequences for overgrowth by pathogens such as Clostridium difficile. Annu Rev Microbiol 43: 69–87PubMedCrossRefGoogle Scholar
  4. 4.
    Neish AS, Gewirtz AT, Zeng H, et al (2000) Prokaryotic regulation of eptihelial responses by inhibition of IkBa ubiquitination. Science; 289: 1560–1563PubMedCrossRefGoogle Scholar
  5. 5.
    Adami JG (1914) Chronic intestinal stasis: autointoxication and subinfection. B M J 1: 177–183CrossRefGoogle Scholar
  6. 6.
    Fine J, Frank ED, Ravin HA, et al (1959) The bacterial factor in traumatic shock. N Engl J Med 260: 214–220PubMedCrossRefGoogle Scholar
  7. 7.
    Berg RD (1981) Promotion of the translocation of enteric bacteria from the gastrointestinal tracts of mice by oral treatment with penicillin, clindamycin, or metronidazole. Infect Immun 33: 854–861PubMedGoogle Scholar
  8. 8.
    Deitch EA (1990) The role of intestinal barrier failure and bacterial translocation in the development of systemic infection and multiple organ failure. Arch Surg 125: 403–404PubMedCrossRefGoogle Scholar
  9. 9.
    Carrico CJ, Meakins JL, Marshall JC et al (1986) Multiple organ failure syndrome. The gastrointestinal tract: The ‘motor’ of MOF. Arch Surg 121: 196–208PubMedCrossRefGoogle Scholar
  10. 10.
    Wells CL, Maddaus MA, Simmons RL (1988) Proposed mechanisms for the translocation of intestinal bacteria. Rev Infect Dis 10: 958–979PubMedCrossRefGoogle Scholar
  11. 11.
    Berg RD (1999) Bacterial translocation from the gastrointestinal tract. Adv Exp Med Biol 473: 11–30PubMedCrossRefGoogle Scholar
  12. 12.
    Wells CL, Maddaus MA, Erlandsen SL, Simmons RL (1988) Evidence for the phagocytic transport of intestinal particles in dogs and rats. Infect Immun 56: 278–282PubMedGoogle Scholar
  13. 13.
    Kucharzik T, Lugering N, Rautenberg K, et al (2000) Role of M cells in intestinal barrier function. Ann NY Acad Sci 915: 171–183PubMedCrossRefGoogle Scholar
  14. 14.
    Wells CL, Westerlo EM van de, Jechorek RP, Erlandsen SL (1996) Intracellular survival of enteric bacteria in cultured human enterocytes. Shock 6: 27–34PubMedCrossRefGoogle Scholar
  15. 15.
    Sansonetti PJ (2001) Microbes and microbial toxins: paradigms for microbial-mucosal interactions III. Shigelosis: from symptoms to molecular pathogenesis. Am J Physiol Gastrointest Liver Physiol 280: G319 - G323PubMedGoogle Scholar
  16. 16.
    Lecuit M, Vandormael-Pournin S, Lefort J, et al (2001) A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292: 1722–1725PubMedCrossRefGoogle Scholar
  17. 17.
    Dombrowicz D, Nutten S, Desreumaux P, et al (2001) Role of the high affinity immunoglobulin E recetor in bacterial translocation and intestinal inflammation. J Exp Med 193: 25–34Google Scholar
  18. 18.
    Marshall JC (1999) The gastrointestinal flora and its alterations in critical illness. Curr Opin Crit Care 5: 119–125CrossRefGoogle Scholar
  19. 19.
    Mattar AF, Drongowski RA, Coran AG, Harmon CM (2001) Effect of probiotics on enterocyte bacterial translocation in vitro. Pediatr Surg Internat 17: 265–268CrossRefGoogle Scholar
  20. 20.
    Van Der Waaij D, Berghuis De Vries JM, Lekkerkerk Van Der Wees JEC (1971) Colonization resistance of the digestive tract in conventional and antibiotic treated mice. J Hyg Camb 69: 405–411PubMedCrossRefGoogle Scholar
  21. 21.
    Deitch EA, Sittig K, Li M, et al (1990) Obstructive jaundice promotes bacterial translocation from the gut. Am J Surg 159: 79–84PubMedCrossRefGoogle Scholar
  22. 22.
    Kuzu MA, Kale IT, Col C, et al (1999) Obstructive jaundice promotes bacterial translocation in humans. Hepato-gastroenterology 46: 2159–2164PubMedGoogle Scholar
  23. 23.
    Alverdy JC, Aoys E, Moss GS (1988) Total parenteral nutrition promotes bacterial translocation from the gut. Surgery 104: 185–190PubMedGoogle Scholar
  24. 24.
    Fazal N, Shamim M, Khan SS, et al (2000) Neutrophil depletion in rats reduces burn injury-induced intestinal bacterial translocation. Crit Care Med 28: 1550–1555PubMedCrossRefGoogle Scholar
  25. 25.
    Eaves-Pyles T, Wong HR, Alexander JW (2000) Sodium arsenite induces the stress response in the gut and decreases bacterial translocation in a burned mouse model with gut-derived sepsis. Shock 13: 314–319PubMedCrossRefGoogle Scholar
  26. 26.
    Alexander JW, Boyce ST, Babcock GF, et al (1990) The process of microbial translocation. Ann Surg 212: 496–512PubMedCrossRefGoogle Scholar
  27. 27.
    Kane TD, Alexander JW, Johannigman JA (1998) The detection of microbial DNA in the blood: a sensitive method for diagnosing bacteremia and/or bacterial translocation in surgical patients. Ann. Surg 227: 1–11PubMedCrossRefGoogle Scholar
  28. 28.
    Sakamoto H, Naito H, Ohta Y, et al (1999) Isolation of bacteria from cervical lymph nodes in patients with oral cancer. Arch Oral Biol 44: 789–793PubMedCrossRefGoogle Scholar
  29. 29.
    Krause W, Matheis H, Wulf K (1969) Fungaemia and funguria after oral administration of Candida albicans. Lancet 1: 598–599PubMedCrossRefGoogle Scholar
  30. 30.
    O’Boyle CJ, MacFie J, Mitchell CJ, et al (1998) Microbiology of bacterial translocation in humans. Gut 42: 29–35PubMedCrossRefGoogle Scholar
  31. 31.
    Woodcock NP, Sudheer V, El-Barghouti N, et al (2000) Bacterial translocation in patients undergoing abdominal aortic aneurysm repair. Br J Surg 87: 439–442PubMedCrossRefGoogle Scholar
  32. 32.
    Marshall JC, Christou NV, Meakins JL (1993) The gastrointestinal tract. The “undrained abscess” of multiple organ failure. Ann Surg 218: 111–119PubMedCrossRefGoogle Scholar
  33. 33.
    MacFie J, O’Boyle C, Mitchell CJ, et al (1999) Gut origin of sepsis: a prospective study investigating associations between bacterial translocation, gastric microflora, and septic morbidity. Gut 45: 223–228PubMedCrossRefGoogle Scholar
  34. 34.
    Andersen LW, Landow L, Baek L, et al (1993) Association between gastric intramucosal pH and splanchnic endotoxin, antibody to endotoxin, and tumor necrosis factor-a concentrations in patients undergoing cardiopulmonary bypass. Crit Care Med 21: 210–217PubMedCrossRefGoogle Scholar
  35. 35.
    Soong CV, Blair PHB, Halliday ML, et al (1993) Endotoxemia, the generation of cytokines, and their relationship to intramucosal acidosis of the sigmoid colon in elective abdominal aortic aneurysm repair. Eur J Vasc Surg 7: 534–539PubMedCrossRefGoogle Scholar
  36. 36.
    Buttenschoen K, Buttenschoen DC, Berger D, et al (2001) Endotoxemia and acute-phase proteins in major abdominal surgery. Am J Surg 181: 36–43PubMedCrossRefGoogle Scholar
  37. 37.
    Winchurch RA, Thupari JN, Munster AM (1987) Endotoxemia in burn patients: Levels of circulating endotoxins are related to burn size. Surgery 102: 808–812PubMedGoogle Scholar
  38. 38.
    Niebauer J, Volk HD, Kemp M, et al (1999) Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 353: 1838–1842PubMedCrossRefGoogle Scholar
  39. 39.
    Woodcock NP, Robertson J, Morgan DR, et al (2001) Bacterial translocation and immunohistochemical measurement of gut immune function. J Clin Pathol 54: 619–623PubMedCrossRefGoogle Scholar
  40. 40.
    Schoeffel U, Pelz K, Haring RU, et al (2000) Inflammatory consequences of the translocation of bacteria and endotoxin to mesenteric lymph nodes. Am J Surg 180: 65–72PubMedCrossRefGoogle Scholar
  41. 41.
    Baxby D, van Saene HKF, Stoutenbeek CP, Zandstra DF (1996) Selective decontamination of the digestive tract: 13 years on, what it is and what it is not. Intensive Care Med 22: 699–706PubMedCrossRefGoogle Scholar
  42. 42.
    D’Amico R, Pifferi S, Leonett C, et al (1998) Effectiveness of antibiotic prophylaxis in critically ill adult patients: systematic review of randomized controlled trials. B M J 316: 1275–1285CrossRefGoogle Scholar
  43. 43.
    Nathens AB, Marshall JC (1999) Selective decontamination of the digestive tract ( SDD) in surgical patients. Arch Surg 134: 170–176PubMedCrossRefGoogle Scholar
  44. 44.
    Kudsk KA, Croce MA, Fabian TC, et al (1992) Enteral versus parenteral feeding. Effects on septic morbidity after blunt and penetrating abdominal trauma. Ann Surg 215: 503–513Google Scholar
  45. 45.
    McGregor CS, Marshall JC (2001) Enteral feeding in acute pancreatitis: just do it. Curr Opin Crit Care; 7: 89–91PubMedCrossRefGoogle Scholar
  46. 46.
    Demetriades D, Smith JS, Jacobsen LE, et al (1999) Bactericidal/permeability-increasing protein (rBPI21) in patients with hemorrhage due to trauma: results of a multicenter phase II clinical trial. J Trauma Injury Infect Crit Care; 46: 667–677CrossRefGoogle Scholar
  47. 47.
    Lemaire LC, Lanschot JJ van, Stoutenbeek CP, et al (1997) Bacterial translocation in multiple organ failure: cause or epiphenomenon still unproven. Br J Surg 84: 1340–1350PubMedCrossRefGoogle Scholar
  48. 48.
    Moore FA, Moore EE, Poggetti R, et al (1991) Gut bacterial translocation via the portal vein: a clinical perspective with major torso trauma. J Trauma 31: 629–638PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 2002

Authors and Affiliations

  • J. C. Marshall

There are no affiliations available

Personalised recommendations