Mathematics is the language universally used to describe and analyze phenomena and processes both natural and artificial. Thus, the importance of system theory in science and technology is apparent. For example, most of the processes of interest in chemical engineering are described with complex, and often nonlinear, mathematical models. In this case, the system theory is of value in deriving insight and predictions.

In this presentation, some examples are used to enlighten both capabilities and possible difficulties arising when implementing this approach. First, an example of the so called numerical experimentation used to analyse a chemical-physical phenomenon will be presented. Then, results of the dynamic nonlinear characterisation of a polymeric liquid crystalline phase subjected to flow fields will be reported. Finally, the use of dynamic analysis for design and analysis of a well known industrial process will be described.


Shear Rate Hopf Bifurcation Shear Plane Flame Spread Pitchfork Bifurcation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The New Encyclopedia Britannica, Macropedia, Vol. 17, Benton Pu., Chicago 1975Google Scholar
  2. 2.
    Murad R.J., Lamesoda J., Isoda H., Summerfield M. (1970) Combustion and Flame, 15, 289CrossRefGoogle Scholar
  3. 3.
    Akita K. (1973) Fourteenth Symp. ( Int.) on Combustion, The Combustion Institute, 1075Google Scholar
  4. 4.
    Glassman I., Dryer F. L. (1980) Fire Safety Journal 3, 123CrossRefGoogle Scholar
  5. 5.
    Hirano T., Suzuki T., Mashiko I., Tanabe N. (1980) Combustion Science and Technology 22, 83CrossRefGoogle Scholar
  6. 6.
    Ito D., Masuda, K. Saito (1991) Combustion and flame, 83, 375CrossRefGoogle Scholar
  7. 7.
    Ross H. D., Sotos R. G. (1991) Twenty-third Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, 1649Google Scholar
  8. 8.
    Ross H. D. (1994) Progress in Energy and Combustion Science 20, 17CrossRefGoogle Scholar
  9. 9.
    Di Blasi C., Crescitelli S., Russo G. (1990) Twenty-third Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh, 1669Google Scholar
  10. 10.
    Di Blasi C., Crescitelli S., Russo G. (1991) Computer Methods in Applied Mechanics and Engineering, 90, 643CrossRefGoogle Scholar
  11. 11.
    Di Blasi C. (1991) in Fluid-dynamical Aspects of Combustion Theory, Pitman Research Notes in Mathematics Series N. 223, Longman Scientific & Technical, M. Onofri and A. Tesei (Eds.), pp. 348–364Google Scholar
  12. 12.
    Di Blasi C. (1995) Combustion Science and Technology, 110–111, 555Google Scholar
  13. 13.
    Doi M., Edwards S.F. (1986) The Theory of Polymer Dynamics. Clarendon Press, OxfordGoogle Scholar
  14. 14.
    Larson R.G. (1990) Macromolecules, 23, 3983CrossRefGoogle Scholar
  15. 15.
    Larson R.G., Ottinger H.C. (1991) Macromolecules, 24, 6270CrossRefGoogle Scholar
  16. 16.
    Maffettone P. L., Crescitelli S. (1995) J. Non-Newtonian Fluid Mech, 59, 73CrossRefGoogle Scholar
  17. 17.
    Faraoni V., Grosso M., Crescitelli S., Maffettone P. L. (1999) J. Rheol., 43, 829CrossRefGoogle Scholar
  18. 18.
    Doedel E. J., Kernevez J. P. (1986) AUTO: Software for Continuation and Bifurcation Problems in Ordinary Differential Equations, California Institute of TechnologyGoogle Scholar
  19. 19.
    Grosso M., Keunings R., Crescitelli S., Maffettone P. L. (2000) in preparationGoogle Scholar
  20. 20.
    Mewis J., Mortier M. M., Vermant J., Moldenaers P. (1997) Macromolecules, 30, 1323CrossRefGoogle Scholar
  21. 21.
    Grizzuti N., Aresta P., Maffettone P. L. (2000) Proceedings of the XIII International Congress on RheologyGoogle Scholar
  22. 22.
    Morud J. C., Skogestad S. (1998) AIChE J., 44, 888CrossRefGoogle Scholar
  23. 23.
    Van Herden C. (1953) Ind. Eng. Chem. 45, 1242Google Scholar
  24. 24.
    Aris R., Amundson N. R. (1958) Chem. Eng. Sci., 7, 121CrossRefGoogle Scholar
  25. 25.
    Stephens A. D., Richards R. J. (1973) Automatica, 9, 65CrossRefGoogle Scholar
  26. 26.
    Crescitelli S., “Nonlinear Analysis and Dynamic Behaviour of Chemical Reactors”, in Analysis, Stability and Dynamics of Chemical Reactors, G. Continillo, S. Crescitelli, and P.G. Lignola (Eds.), Cuen, Napoli (1995)Google Scholar
  27. 27.
    Elnashaie S. S. E. K., Elshishini S. S. (1996) Dynamical modelling, bifurcation and chaotic behavior of gas-solid catalytic reactors. Gordon and Breach, AmsterdamGoogle Scholar
  28. 28.
    Mancusi E., Merola G., Crescitelli S.,Maffettone P.L. (2000), AIChE J., 44, 824CrossRefGoogle Scholar
  29. 29.
    Mancusi (2000) Ph.D. Thesis, Dinamica di reattori multifase, Università Federico II NapoliGoogle Scholar
  30. 30.
    Froment G. F., Bischoff K. B. (1990) Chemical reactor analysis and design., 2nd ed., Wiley, New YorkGoogle Scholar
  31. 31.
    Villadsen J., Michelsen M.L. (1978) Solution of differential Equation Models by Polynomial approximation. Prentice-Hall, Englewood CliffsGoogle Scholar
  32. 32.
    Continillo G., Faraoni V., Maffettone P. L., Crescitelli S., Chem. Eng. Sci., 55, 303 (2000)CrossRefGoogle Scholar
  33. 33.
    Kuznetsov Y. A. (1998) Elements of applied bifurcation theory., 2nd ed., Springer Verlag, New YorkGoogle Scholar
  34. 34.
    Seider W. D., T. D. Seader, D. R. Lewin (1999) Process Design Principles: Synthesis, Analysis and Evaluation. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milan 2002

Authors and Affiliations

  • S. Crescitelli
    • 1
  1. 1.Dipartimento di Ingegneria ChimicaUniversità Federico II di NapoliNapoliItaly

Personalised recommendations