Skip to main content
  • 250 Accesses

Abstract

CFD simulations of a mixing sensitive reaction process, carried out in a stirred vessel and consisting of two parallel second order reactions competing for a common reagent, axe performed. The different discretization needs of the process simulation with respect to the fluid-dynamics simulation axe addressed and exploited to conveniently conduct the former with a much coarser gridding. Simulation results are compared with in-house experimental data and a good agreement is observed. No micromixing modelling is found to be required in order to match simulations and experiment, even when the common reagent is slowly injected in the premixed solution containing the other two reagents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brucato A., Ciofalo M., Grisafi F., Micale G. (1998) Numerical prediction of flow fields in baffled stirred vessels: a comparison of alternative modelling ap-proaches. Chem. Eng. Sci. 53, 3653–3684

    Article  CAS  Google Scholar 

  2. Ng K., Fentiman N.J., Lee K.C., Yianneskis M. (1998) Assessment of sliding mesh CFD predictions and LDA measurements of the flow in a tank stirred by a Rushton impeller. Chem. Eng. Res. Des. 76, 737–747

    Article  CAS  Google Scholar 

  3. Derksen J.J., Van den Akker H.E.A. (1999) Large eddy simulations on the flow driven by a Rushton turbine A.I.Ch. E. J. 45, 209–221

    Article  CAS  Google Scholar 

  4. Harris C.K., Roekaerts D., Rosendal F.J.J. (1996) Computational fluid dynamics for chemical reactor engineering. Chem. Eng. Sci. 51, 1569–1594

    Article  CAS  Google Scholar 

  5. Kuipers J.A.M., Swaaij W.P.M. (1997) Application of computational fluid dynamics to chemical reaction engineering. Rew. in Chem. Engng. 13, 1–118

    Article  CAS  Google Scholar 

  6. Smith J.M. (1990) Industrial needs for mixing research. Trans IchemE 68, 3–6

    CAS  Google Scholar 

  7. Baldyga J., Bourne J.R., Hearn S.J. (1997) Interaction between chemical reac-tions and mixing on various scales. Chem. Eng. Sci. 52, 457–466

    Article  CAS  Google Scholar 

  8. Baldyga J., Bourne J.R. (1992) Interaction between mixing on various scales in stirred tank reactors. Chem. Eng. Sci. 47, 1839–1848

    Article  CAS  Google Scholar 

  9. Pipino M., Fox R.O. (1994) Reactive mixing in a tubular jet reactor: a comparison of PDF simulation with experimental data. Chem. Eng. Sci. 49, 5229–5241

    Article  CAS  Google Scholar 

  10. Marchisio D.L., Barresi A. A., Baldi G., Fox R.O. (2000) Comparison of different modelling approaches to turbulent precipitation. Proc. of the 10th Europ. Conf. on Mixing, H.E.A. Van den Akker and J.J. Derksen Eds., Elsevier (Amsterdam), 77–84

    Google Scholar 

  11. Akiti O., Armenante P.M. (2000) A computational and experimental study of mixing and chemical reaction in a stirred tank reactor equipped with a down- pumping hydrofoil impeller using a micro-mixing-based CFD model. Proc. of the 10th Europ. Conf. on Mixing, H.E.A. Van den Akker and J.J. Derksen Eds., Elsevier (Amsterdam), 61–68

    Google Scholar 

  12. Patterson G.K., Randick J. (2000) Simulation with validation of mixing effects in continuos and fed-batch reactors Proc. of the 10th Europ.Conf. on Mixing, H.E.A. Van den Akker and J.J. Derksen Eds., Elsevier (Amsterdam), 53–60

    Google Scholar 

  13. Baldyga J., Henczka M., Makowski L. (2000) Influence of viscosity on turbulent mixing and product distribution of parallel chemical reactions. Proc. of the 10th Europ. Conf. on Mixing, H.E.A. Van den Akker and J.J. Derksen Eds., Elsevier (Amsterdam), 101–108

    Google Scholar 

  14. Brucato A., Ciofalo M., Grisafi F., Tocco R. (2000) On the simulation of stirred tank reactors via computational fluid dynamics. Chem. Eng. Sci. 55, 291–302

    Article  CAS  Google Scholar 

  15. Baldyga J., Bourne J.R. (1990) The effect of micromixing on parallel reactions. Chem. Eng. Sci. 45, 907–916

    Article  CAS  Google Scholar 

  16. Baldyga J., Bourne J.R., Yang Yang (1993) Influence of feed pipe diameter on mesomixing in stirred tank reactors. Chem. Eng. Sci. 48, 3383–3390

    Article  CAS  Google Scholar 

  17. Bourne J.R., Gholap R.V., Rewatkar V.B. (1995) The influence of viscosity on the product distribution of parallel reactions. Chem. Eng. J. 58, 15–20

    CAS  Google Scholar 

  18. Luo J. Y., Gosman A.D., Issa R.I., Middleton J.C., Fitzgerald M.K. (1993). Full flow field computation of mixing in baffled stirred vessels. Trans. IChemE 71 (A), 342–344

    CAS  Google Scholar 

  19. Wu H., Patterson G.K. (1989) Laser-Doppler measurements of turbulent-flow parameters in stirred tanks. Chem. Eng. Sci. 44, 2207–2221

    Article  CAS  Google Scholar 

  20. Van Doormal J.P., Raithby G.D. (1984) Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numer. Heat Transfer 7, 147–163

    Google Scholar 

  21. Yakhot V., Orszag S.A., Yakhot A. (1987) Heat transfer in turbulent fluids — I. pipe flow. Int. J. of Heat and Mass Transfer 30, No. 1, 15–22

    Article  Google Scholar 

  22. Chapra S.C., Canale R.P. (1989) Numerical Methods for Engineers. Mc Graw Hill, New York

    Google Scholar 

  23. Cate A., Bermingham S.K., Derksen J.J., Kramer, H.M.J. (2000) Compartmental modelling of an 1100L DTB crystallizer based on Large Eddy simulation. Proc. of the 10th Europ. Conf. on Mixing, H.E.A. Van den Akker and J.J. Derksen Eds., Elsevier (Amsterdam), 255–264

    Google Scholar 

  24. Launder B.E., Spalding D.B. (1974) The numerical computation of turbulent flows, Comp. Meth. in Appi. Mech. and Engng. 3, 269–289

    Article  Google Scholar 

  25. Middleton J.C., Pierce F., Lynch P.M. (1986) Computation of flow fields and complex reaction yield in turbulent stirred reactors and comparison with experimental data. Chem. Eng. Res. Des. 64, 18–22

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Italia, Milan

About this paper

Cite this paper

Brucato, A., Grisafi, F., Micale, G., Rizzuti, L. (2002). CFD Simulation of Stirred Vessel Reactors. In: Continillo, G., Giona, M., Crescitelli, S. (eds) Nonlinear Dynamics and Control in Process Engineering — Recent Advances. Springer, Milano. https://doi.org/10.1007/978-88-470-2208-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2208-9_6

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0161-9

  • Online ISBN: 978-88-470-2208-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics