Qualitative Modeling and Identification

  • A. Balestrino
  • A. Caiti
  • A. Landi
  • L. Sani
Conference paper


In many situation of industrial interest, the control designer needs qualitative information on the process to be controlled (e.g., linearity/nonlinearity, time delay, dominant poles). In this contribution, three different procedures are proposed for modeling plants in terms of generic Wiener/Hammerstein nonlinear models with time delay. In order of increasing generality, the procedures include an extension of the Nonlinear AutoTune Variation method, a modulating function approach to the estimation of nonlinear delay systems, a combination of Laguerre basis functions and neural networks for off-line and on-line parameter identification. In all cases, experimental or simulated results on benchmark cases are reported.


Qualitative Modeling Hammerstein Model Wiener Model Hammerstein System Nonlinear Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Garulli A., Tesi A., Vicino A. (Eds.)(1999) Robustness in Identification and Control, Lecture Notes in Control and Information Sciences, Springer-Verlag LondonCrossRefGoogle Scholar
  2. 2.
    Ziegler J.G., Nichols N.B. (1942) Optimum settings for automatic controllers, Trans. A.S.M.E., 759–768Google Scholar
  3. 3.
    Aastrom K.J., Hagglund T. (1984) Automatic Tuning of Simple Regulators with Specifications on Phase and Amplitude Margins, Automatica, 20, 645–651CrossRefGoogle Scholar
  4. 4.
    Kalafatis A.D., Wang L., Cluett W.R. (1997) Identification of Wiener-type nonlinear systems in a noisy environment, Int. J. Control, 66, 923–941CrossRefGoogle Scholar
  5. 5.
    Greblicky W. (1994) Nonparametric identification of Wiener systems by orthogonal series, IEEE Trans. Autom. Contr., 39, 2077–2086CrossRefGoogle Scholar
  6. 6.
    Wigren T. (1993) Convergence Analysis of recursive identification algorithms based on the nonlinear Wiener model, Automatica, 29, 1011–1025CrossRefGoogle Scholar
  7. 7.
    Pajunen G.A. (1992) Adaptive control of Wiener type nonlinear systems, Automatica, 28, 781–785CrossRefGoogle Scholar
  8. 8.
    Zi-Qiang L. (1994) On the identification of the controlled plants described by the Hammerstein system, IEEE Trans. Autom. Contr., 39, 569–573CrossRefGoogle Scholar
  9. 9.
    Greblicky W. (1996) Nonlinearity estimation in Hammerstein systems based on ordered observation, IEEE Trans. Sig. Proc., 44, 1224–1233CrossRefGoogle Scholar
  10. 10.
    Balestrino A., Landi A., Sani L. (2000) Parameter identification of continuous systems with multiple input time delays via modulating functions, IEE Proc. D Contr. Th. Appl., 147, 19–27Google Scholar
  11. 11.
    Balestrino A., Caiti A., Zanobini G. (1999) Identification of Wiener-type non¬linear systems by Laguerre filters and neural networks, Proc. IFAC World Congress, Beijing, ChinaGoogle Scholar
  12. 12.
    Balestrino A., Caiti A. (2000) Approximation of Hammerstein/Wiener dynamic models, IEEE Int. J. Conf. Neural Networks, Como, ItalyGoogle Scholar
  13. 13.
    Chau K.T., Chan C.C. (1995) Nonlinear identification of power electronics systems, Proc. of 1995 Int. Conf. on Power Electronics and Drive Systems, 1, 329–334Google Scholar
  14. 14.
    El-Sharkawi M.A., El-Samahy A.A., El-Sayed M.L. (1994) High performance drive of DC brushless motors using neural network, IEEE Trans. On Energy Conversion, 9, 317–322CrossRefGoogle Scholar
  15. 15.
    Ill Moon S., Keyhani A., Pillutla S. (1999) Nonlinear neural-network modelling of an induction machine, IEEE Trans. On Control Systems Technology, 7, 203–211CrossRefGoogle Scholar
  16. 16.
    Rubaai A., Kotaru R., Kankam M.D. (2000) A continually online-trained neural network controller for brushless DC motor drives, IEEE Trans. On Industry Applications, 36, 475–483CrossRefGoogle Scholar
  17. 17.
    Eskinat E., Johnson S.H., Luyben W.L. (1991) Use of Hammerstein models in identification of nonlinear systems, AIChE Journal, 37, 255–268CrossRefGoogle Scholar
  18. 18.
    Luyben W.L., Eskinat E. (1994) Nonlinear Auto-Tune Identification, Int. J. Control, 59, 595–626CrossRefGoogle Scholar
  19. 19.
    Gelb A., VanderVelde W.E. (1968) Multiple-Input Describing Functions and Nonlinear System Design, McGraw-Hill, NY, 1968, 519–544Google Scholar
  20. 20.
    Shinbrot M. (1957) On the analysis of linear and non linear systems, Trans. ASME, 79, 547–552Google Scholar
  21. 21.
    Rao G.P., Sivakumar L. (1976) Identification of deterministic time-lag systems, IEEE Trans. Autom. Contr., 21, 527–529CrossRefGoogle Scholar
  22. 22.
    Unbehauen II., Rao G.P. (1990) Continuous-time approaches to system identification A survey, Automatica, 26, 23–35CrossRefGoogle Scholar
  23. 23.
    Pearson A.E., Lee F.C. (1985) On the identification of polynomial input-output differential systems, IEEE Trans. Automatic Control, 30, 778–782CrossRefGoogle Scholar
  24. 24.
    Co T.B., Ydstie B.E. (1990) System identification using modulating functions and fast Fourier transformations, Computers Chem. Engng, 14, 1051–1066Google Scholar
  25. 25.
    Rao G.P., Palanisamy K.R. (1983) Improved algorithms for parameter identifications in continuous systems via Walsh functions, IEE Proc. D, Contr. Theory Appl., 130, 9–16Google Scholar
  26. 26.
    Jordan J.R., Jalali-Naini S.A., Mackie R.D.L. (1990) System identification with Hermite modulating functions, IEE Proc. D, Contr. Theory Appl., 137, 87–93Google Scholar
  27. 27.
    Saha D.C., Rao G.P. (1982) A general algorithm for identification in lumped continuous systems The Poisson moment functional approach, IEEE Trans. Aut. Cont., 27, 223–225CrossRefGoogle Scholar
  28. 28.
    Preising II. A, Rippin D.W.T. (1993) Theory and application of the modulating function method Computers Chem. Eng., 17, 1–16Google Scholar
  29. 29.
    Wahlberg, B., P.M. Makila (1996) On approximation of stable linear dynamical systems using Laguerre and Kautz functions, Automatica, 32, 693–708CrossRefGoogle Scholar
  30. 30.
    Van den Hof P.M.J., Heuberger P.S.C., Bokor J. (1994) System identification with generalized orthonormal basis functions, Proc. 33 IEEE Conf. Dec. Contr., Lake Buena Vista, FLGoogle Scholar
  31. 31.
    Bokor J., Heuberger P., Ninness B., Oliveira e Silva T., Van den Hof P., Wahlberg B. (1999) Modeling and Identification with Orthogonal basis functions, Tutorial, IFAC World Congress, Beijing, ChinaGoogle Scholar
  32. 32.
    Barron A.R. (1993) Universal approximation bounds for superpositions of a sigmoidal function, IEEE Trans. Inf. Th., 39, 930–945CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milan 2002

Authors and Affiliations

  • A. Balestrino
    • 1
  • A. Caiti
    • 2
  • A. Landi
    • 1
  • L. Sani
    • 1
  1. 1.DSEA, Dipartimento di Sistemi Elettrici e AutomazioneUniversità di PisaPisaItaly
  2. 2.DII, Dipartimento di Ingegneria dell’InformazioneUniversità di SienaSienaItaly

Personalised recommendations