Skip to main content

Identification of Chemical Processes for Control Purposes by Relay Techniques

  • Conference paper
Nonlinear Dynamics and Control in Process Engineering — Recent Advances
  • 242 Accesses

Abstract

A new identification technique (ATV+) for completely unknown processes is presented: it allows to build a parametric model from few experimental tests and to design a PID or Model Based Controller. It is also extended to open loop unstable processes and to multivariable processes. The method is compared with the original technique (ATV) and with simpler identification techniques in terms of ease of application, duration of tests and achievable performance.

Simulation results for the case of SISO processes, show that identification obtained by ATV+ technique allows superior performance, both for PID and for Model Based Controllers, thus compensating the longer identification times. In the MIMO case, ATV+ technique leads successfully to the design of decentralized controllers, but the improved knowledge of the system is not compensated by superiority in achievable performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen G.H., Coon A. (1952) Theoretical Considerations of Retarded Control. Trans. ASME, 75, 827–834

    Google Scholar 

  2. Yu C.C. (1998) Autotuning of PID controllers. Springer Verlag London, pp. 7–10

    Google Scholar 

  3. Luyben W.L. (1987) Derivation of Transfer Functions for Highly Nonlinear Distillation Columns. Ind. Eng. Chem. Res., 26, 2490–2495

    Article  CAS  Google Scholar 

  4. Åström K.J., Hägglund T. (1984) Automatic Tuning of Simple Regulators with Specification on Phase and Amplitude Margins. Automatica, 20, 645–651

    Article  Google Scholar 

  5. Cook P. (1985) Non-Linear Dynamical Systems, Prentice Hall: Englewood Cliffs, N.J. (USA), 52–64

    Google Scholar 

  6. Ziegler J.G., Nichols N.B. (1942) Optimum Settings for Automatic Controllers. Trans ASME, 65, 433–444

    Google Scholar 

  7. Loh A.P., Hang C.C., Quek C.K- Vasnani V.U. (1993) Autotuning of Multiloop Proportional-Integral Controllers using Relay Feedback. Ind. Eng. Chem. Res. 32, 1102–1107

    Article  CAS  Google Scholar 

  8. Shen S.H., Yu C.C. (1994) Use of Relay Feedback Test for Automatic Tuning of Multivariate Systems. Process Systems Eng. 40, 627–646

    CAS  Google Scholar 

  9. Friman M., Waller K.V. (1994) Autotuning of Multiloop Control Systems. Ind. Eng. Chem. Res., 33, 1708–1717.

    Article  CAS  Google Scholar 

  10. Palmor Z.J., Halevi Y., Krasney N. (1995) Automatic Tuning of Decentralized PID Controllers for TITO Processes. Automatica, 31, 1001–1010

    Article  Google Scholar 

  11. Halevi Y., Palmor Z.J., Efrati T. (1997) Automatic Tuning of Decentralized PID Controllers for MIMO Processes. Journal of Process Control, 7, 119–128

    Article  CAS  Google Scholar 

  12. Li W., Eskinat E., Luyben, W.L. (1991) An Improved Autotune Identification Method. Ind. Eng. Chem. Res, 30, 1530–1541

    Article  CAS  Google Scholar 

  13. Friman M., Waller K.V. (1995) Closed-Loop Identification by Use of Single-Valued Nonlinearities. Ind. Eng. Chem. Res., 34, 3052–3058

    Article  CAS  Google Scholar 

  14. Hang C.C., Astrom K.J., Ho W.K. (1991) Refinements of the Ziegler Nichols Tuning Formula. IEEE Proc., Part D, 138, 111–118

    Google Scholar 

  15. Friman M., Waller K.V. (1997) A Two-channel Relay for Autotuning. Ind. Eng. Chem. Res., 37, 2662–2671

    Article  Google Scholar 

  16. Semino D., Scali C. (1998) Improved Identification and Autotuning of PI Controllers for MIMO Processes by Relay Techniques. J. Proc. Contr., 8, 219–227

    Article  CAS  Google Scholar 

  17. Scali C., Marchetti G., Semino D. (1999) Identification and Autotuning of Completely Unknown Processes. Ind. Eng. Chem. Res., 38, 1987–1997

    Article  CAS  Google Scholar 

  18. Marchetti G., Semino D., Scali C. (2000) Accuracy of Autotune Identification Methods and Achievable Performance. IFAC-SYSID: Int. Conf. on System Identification, pap. FrPm 4 /5

    Google Scholar 

  19. Marchetti G., Scali C. (1999) A comparison of Relay Techniques for Identification and Autotuning of Chemical Processes. Computers and Chemical Engineering, 20, S305–S308

    Article  Google Scholar 

  20. Marchetti G., Scali C. (2000) Use of Modified Relay Techniques for the Design of Model Based Controllers for Chemical Process Control Purposes. Ind. Eng. Chem. Res. 39 (9), 3325–3334

    Article  CAS  Google Scholar 

  21. Parabita P., Marchetti G., Scali C. (2000) Sequential Identification and Autotuning by Relay Techniques of Decentralised Controllers for MIMO Processes. IFAC-ADCHEM 2000: Int. Symp. on Advanced Control of Chemical Processes, 91–96

    Google Scholar 

  22. Marchetti G., Parabita P., Scali C. (2000) Sequential versus Simultaneous Relay Techniques for Autotuning of Multivariate Processes, PCI-2000 Int. Conf. on Process Control and Instrumentation; Glasgow (UK), 268–273

    Google Scholar 

  23. Marchetti G., Scali C., Lewin D.R. (2001) Identification and Control of Open- Loop Unstable Processes by Relay Methods. Automatica, (in press)

    Google Scholar 

  24. Marchetti G., Scali C. (2001) Different Approaches for Relay-Based Identification and Control of Unstable Processes, European Control Conference ECC’01, (accepted)

    Google Scholar 

  25. Morari M., Zafiriou E. (1989) Robust Process Control. Prentice Hall: Engle- wood Cliffs, N.J. (USA), 114–124

    Google Scholar 

  26. Lee J., Cho W., Edgar T.F. (1990) An Improved Technique for PID Controller Tuning from Closed Loop Tests. AIChE Jnl. 36, 1891–1895

    Article  CAS  Google Scholar 

  27. Rotstein G.E., Lewin D.R. (1991) Simple PI and PID Tuning for Open-Loop Unstable Systems. Ind. Eng. Chem. Res, 30, 1864–1869

    Article  CAS  Google Scholar 

  28. Shen S.H., Wu J.S., Yu C.C. (1996) Use of Biased-relay Feedback for System Identification. AIChE Jnl., 42, 1174–1180

    Article  CAS  Google Scholar 

  29. Luyben W.L. (1986) Simple Method for Tuning SISO Controllers in Multivariate Systems. Ind. Eng. Chem. Process Des. Dev., 25, 654–660

    Article  CAS  Google Scholar 

  30. Marchetti G., Tognini F., Scali C. (2000) Closed Loop Identification and Control of Multivariate Chemical Processes: a Case Study. DINIP 2000: Dinamica e Controllo NonLineare nell’Ingegneria di Processo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Italia, Milan

About this paper

Cite this paper

Scali, C. (2002). Identification of Chemical Processes for Control Purposes by Relay Techniques. In: Continillo, G., Giona, M., Crescitelli, S. (eds) Nonlinear Dynamics and Control in Process Engineering — Recent Advances. Springer, Milano. https://doi.org/10.1007/978-88-470-2208-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2208-9_18

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0161-9

  • Online ISBN: 978-88-470-2208-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics