On Some Properties of Three-dimensional Mixing Systems

  • A. Adrover
  • S. Cerbelli
  • M. Giona
Conference paper


This article develops some general observations on the statistical, geometrical and dynamic properties of three-dimensional autonomous and periodically forced mixing systems. The main geometrical differences between the two- dimensional and three-dimensional cases, and between autonomous and time- periodic velocity fields are discussed in detail. Although the article makes use exclusively of model systems of three-dimensional flows, the results obtained give useful hints to approach a global characterization of mixing in types of industrial equipment such as stirred vessels.


Velocity Field Surface Element Topological Entropy Material Line Global Bifurcation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aref H. (1984), J. Fluid Mech. 143, 1CrossRefGoogle Scholar
  2. 2.
    Ottino J.M. (1989) The Kinematics of Mixing, Stretching and Chaos, Cambridge Univ. Press, CambridgeGoogle Scholar
  3. 3.
    MacKay R.S., Meiss J.D. (1987) Hamiltonian Dynamical Systems: a Reprint Selection, Adam-Hilger, LondonGoogle Scholar
  4. 4.
    Meiss J.D. (1992) Rev. Mod. Phys. 64, 795CrossRefGoogle Scholar
  5. 5.
    Sinai Ya.G. (Ed.) (1989) Dynamical Systems II, Springer Verlag Berlin Heidelberg New YorkGoogle Scholar
  6. 6.
    Katok A., Hasselbaltt B. (1995) Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press, CambridgeGoogle Scholar
  7. 7.
    Anosov D.V., Solodov V.V. (1995), in Dynamical Systems IX, Encyclopaedia of Mathematical Sciences, vol. 66, D. V. Anosov (Ed.), Springer Verlag, Berlin Heidelberg New YorkGoogle Scholar
  8. 8.
    Khakhar D.V., Franijone J. G. and Ottino J.M. (1987) Chem. Engng. Sci. 1, 2909Google Scholar
  9. 9.
    Rom-Kedar V., Leonard A., Wiggins S. (1990), J. Fluid. Mech. 214, 347CrossRefGoogle Scholar
  10. 10.
    Camassa R., Wiggins S. (1991) Phys. Rev. A 43, 774CrossRefGoogle Scholar
  11. 11.
    Muzzio F.J., Swanson P.D., Ottino J.M. (1991) Phys. Fluid A 3, 822CrossRefGoogle Scholar
  12. 12.
    Muzzio F.J., Alvarez M.M., Cerbelli S., Giona M., Adrover A., (2000), Chem. Engng. Sci. 55, 1497CrossRefGoogle Scholar
  13. 13.
    Giona M., Adrover A., Muzzio F.J., Cerbelli S., Alvarez M.M. (1999) Physica D 132, 298CrossRefGoogle Scholar
  14. 14.
    Giona M., Adrover A. (1998) Phys. Rev. Lett. 81, 3864CrossRefGoogle Scholar
  15. 15.
    Liu M., Muzzio F.J., Peskin R.L. (1994) Chaos, Solitons & Fractals 4, 869CrossRefGoogle Scholar
  16. 16.
    Adrover A., Giona M. (2001) Phys. Fluids (in press)Google Scholar
  17. 17.
    Adrover A., Giona M. (1999) Phys. Rev. E 60, 347CrossRefGoogle Scholar
  18. 18.
    Adrover A., Giona M., Muzzio F.J., Cerbelli S., Alvarez M.M. (1998) Phys. Rev E 58, 1CrossRefGoogle Scholar
  19. 19.
    Beigie D., Leonard A.? Wiggins S. (1993) Phys. Rev. Lett. 70, 275Google Scholar
  20. 20.
    Newhouse S., Pignataro T. (1993) J. Stat. Phys. 72, 1331CrossRefGoogle Scholar
  21. 21.
    Oseledec V. l. (1968) Trans. Moscow Math. Soc. 19 197Google Scholar
  22. 22.
    Lamberto D.J., Muzzio F.J., Swanson P.D., Tonkovich A.L., (1996) Chem. Eng. Sci. 51 733CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milan 2002

Authors and Affiliations

  • A. Adrover
    • 1
  • S. Cerbelli
    • 1
  • M. Giona
    • 1
  1. 1.Dipartimento di Ingegneria ChimicaUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations