Cardiovascular and Neuroendocrine Reaction During Inhalation Anaesthesia

  • P. Foёx


The effects of anaesthesia on the circulation have been intensively studied for more than a hundred years. This brief review will address three issues: the effects of anaesthesia on the normal heart, its effect on the ischaemic heart, and the interactions between cardiovascular drugs and anaesthesia.


Coronary Blood Flow Inhalation Anaesthesia Peak Filling Rate Acute Coronary Occlusion Regional Myocardial Dysfunction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shimosato S, Etsten BE (1969) Effects of anesthetic drugs on the heart: a critical review of myocardial contractility and its relationships with hemodynamics. Chn Anesth 9:17–29Google Scholar
  2. 2.
    Hartman JC, Pagel PS, Proctor LT, Kampine JP, Schmelling WT, Waritier DC (1992) Influence of desflurane, isoflurane and halothane on regional tissue perfusion in dogs. Can J Anaesth 39:877–887PubMedCrossRefGoogle Scholar
  3. 3.
    Shimosato S, Yasuda I, Kemmotsu O, Shanks C, Gamble C (1973) Effects of halothane on altered contractility of isolated heart muscle obtained from cats with experimentally produced ventricular hypertrophy and failure. Br J Anaesth 45:2–9PubMedCrossRefGoogle Scholar
  4. 4.
    Terrar DA, Victory JGG (1988) Effects of halothane on membrane currents associated with contraction in single myocytes isolated from guinea-pig ventricle. Br J Pharmacol 94:500–508PubMedGoogle Scholar
  5. 5.
    Terrar DA, Victory JGG (1988) Isoflurane depresses membrane currents associated with contraction in myocytes isolated from guinea-pig ventricle. Anesthesiology 69:742–749PubMedCrossRefGoogle Scholar
  6. 6.
    Puttick RM, Terrar DA (1992) Effects of propofol and enflurane on action potentials, membrane currents and contraction of guinea-pig isolated ventricular myocytes. Br J Pharmacol 107:559–565PubMedGoogle Scholar
  7. 7.
    Takahashi H, Terrar DA (1994) Effects of etomidate on whole-cell and single L-type calcium channel currents in guinea-pig isolated ventricular myocytes. Br J Anaesth 73:812–819PubMedCrossRefGoogle Scholar
  8. 8.
    Takahashi H (1994) Effects of general anaesthetics on calcium and potassium channel currents in heart cells. Thesis, Oxford UniversityGoogle Scholar
  9. 9.
    Study RE (1994) Isoflurane inhibits multiple voltage-gated calcium currents in hippocampal pyramidal neurons. Anesthesiology 81:104–116PubMedCrossRefGoogle Scholar
  10. 10.
    Horan BF, Prys-Roberts C, Roberts JG, Bennett MJ, Foex P (1977) Haemodynamic responses to isoflurane anaesthesia and hypovolaemia in the dog, and their modification by propranolol. Br J Anaesth 49:1179–1187PubMedCrossRefGoogle Scholar
  11. 11.
    Goodchild CS, Serrao JM (1989) Cardiovascular effects of propofol in the anaesthetized dog. Br J Anaesth 63:87–92PubMedCrossRefGoogle Scholar
  12. 12.
    Puttick RM, Diedericks J, Sear JW, Glen JB, Foex P, Ryder WA (1992) Effect of graded infusion rates of propofol on regional and global left ventricular function in the dog. Br J Anaesth 69:375–381PubMedCrossRefGoogle Scholar
  13. 13.
    Roizen MF, Moss J, Henry DP, Kopin IJ (1974) Effect of halothane on plasma catecholamines. Anesthesiology 41:432–439PubMedCrossRefGoogle Scholar
  14. 14.
    Gothert M, Wendt J (1977) Inhibition of adrenal medullary catecholamine secretion by enflurane. 1. Investigation in vivo. Anesthesiology 46:400–403Google Scholar
  15. 15.
    Ebert TJ, Berens RJ, Muzi M, Kampine JP (1991) Direct comparison of etomidate and propofol on sympathetic neural outflow and baroreflex function in man. Anesth Analg 72:S61Google Scholar
  16. 16.
    Sellgren J, Ejnell H, Elam M, Ponten J, Walhn G (1994) Sympathetic muscle nerve activity, peripheral blood flow, and baroreceptor reflexes in humans during propofol anesthesia and surgery. Anesthesiology 80:534–544PubMedCrossRefGoogle Scholar
  17. 17.
    Millar RA, Warden JC, Cooperman LH, Price HL (1974) Central sympathetic discharge and mean arterial pressure during halothane anaesthesia. Br J Anaesth 41:918–928CrossRefGoogle Scholar
  18. 18.
    Stevens WC, Cromwell TH, Halsey MJ, Eger EI, Shakespeare TF, Bahlman SH (1971) The cardiovascular effects of a new inhalation anesthetic, Forane, in human volunteers at constant arterial carbon dioxide tension. Anesthesiology 35:8–16Google Scholar
  19. 19.
    Wolf WJ, Neal MB, Peterson MD (1986) The hemodynamic and cardiovascular effects of isoflurane and halothane anesthesia in children. Anesthesiology 64:328–333PubMedCrossRefGoogle Scholar
  20. 20.
    Calverley RK, Smith NT, Prys-Roberts C, Eger EI, Jones C (1978) Cardiovascular effects of enflurane anesthesia during controlled ventilation in man. Anesth Analg 57:619–628PubMedGoogle Scholar
  21. 21.
    Pagel, Kampine JP, Schmelling WT, Waritier DC (1991) Comparison of the systemic and coronary hemodynamic actions of desflurane, isoflurane, halothane, and enflurane in the chronically instrumented dog. Anesthesiology 74:539–551PubMedCrossRefGoogle Scholar
  22. 22.
    Cutfield GR, Francis CM, Foex P, Jones LA, Ryder WA (1988) Isoflurane and large coronary artery haemodynamics: an experimental study. Br J Anaesth 60:784–790PubMedCrossRefGoogle Scholar
  23. 23.
    Merin RG, Bernard J-M, Doursout M-FG, Cohen M, Chelly JE (1991) Comparison of the effects of isoflurane and desflurane on cardiovascular dynamics and regional blood flow in the chronically instrumented dog. Anesthesiology 74:568–574PubMedCrossRefGoogle Scholar
  24. 24.
    Doyle RL, Foex P, Ryder WA, Jones LA (1989) Effects of halothane on left ventricular relaxation and early diastolic coronary blood flow in the dog. Anesthesiology 70:660–666PubMedCrossRefGoogle Scholar
  25. 25.
    Pagel, Kampine JP, Schmelling WT, Waritier DC (1991) Alteration of left ventricular diastolic function by desflurane, isoflurane, and halothane in the chronically instrumented dog with autonomic nervous system blockade. Anesthesiology 74:1103–1114PubMedCrossRefGoogle Scholar
  26. 26.
    Munoz HR, Marsch SCU, Foex (1995) Regional diastolic left ventricular function under inhalation anaesthesia in dogs. Br J Anaesth 74:479PGoogle Scholar
  27. 27.
    Bland JHL, Lowenstein E (1976) Halothane-induced decrease in experimental myocardial ischemia in the non-failing canine heart. Anesthesiology 45:287–293PubMedCrossRefGoogle Scholar
  28. 28.
    Lowenstein E, Foex P, Francis CM, Davies WL, Yusuf S, Ryder WA (1981) Regional ischemic ventricular dysfunction in myocardium supplied by a narrowed coronary artery with increasing halothane concentrations in the dog. Anesthesiology 55:349–359PubMedCrossRefGoogle Scholar
  29. 29.
    Philbin DM, Foex P, Drummond G, Lowenstein E, Ryder WA, Jones LA (1985) Postsystolic shortening of canine left ventricle supplied by a stenotic coronary artery when nitrous oxide is added in the presence of narcotics. Anesthesiology 62:166–174PubMedCrossRefGoogle Scholar
  30. 30.
    Francis CM, Foex P, Lowenstein E, Glazebrook C, Davies WL, Ryder WA, Jones LA (1982) Interaction between regional myocardial ischaemia and left ventricular performance under halothane anaesthesia. Br J Anaesth 54:965–980PubMedCrossRefGoogle Scholar
  31. 31.
    Waritier DC, Al-Wathiqui MH, Kampine JP, Schmelling WT (1988) Recovery of contractile function of stunned myocardium in chronically instrumented dogs is enhanced by halothane or isoflurane. Anesthesiology 69:552–565CrossRefGoogle Scholar
  32. 32.
    White JL, Myers AK, Analouei A, Kim YD (1994) Functional recovery of stunned myocardium is greater with halothane than fentanyl anaesthesia in dogs. Br J Anaesth 73: 214–219PubMedCrossRefGoogle Scholar
  33. 33.
    Reiz S, Balfors E, Sorensen MB, Ariola S, Friedman A, Truedson H (1983) Isoflurane — a powerful coronary vasodilator in patients with coronary artery disease. Anesthesiology 59: 91–97PubMedCrossRefGoogle Scholar
  34. 34.
    Priebe H-J, Foex P (1987) Isoflurane causes regional myocardial dysfunction in dogs with critical coronary artery stenoses. Anesthesiology 66:293–300PubMedCrossRefGoogle Scholar
  35. 35.
    Buffmgton CW, Romson JL, Levine A, Duttlinger NC, Huang AH (1987) Isoflurane induces coronary steal in a canine model of chronic coronary occlusion. Anesthesiology 66:280–292CrossRefGoogle Scholar
  36. 36.
    Inoue K, Reichelt W, El-Banayosy A, Minami K, Dallmann G, Hartmann N, Windeler J (1990) Does isoflurane lead to a higher incidence of myocardial infarction and perioperative death than enflurane in coronary artery surgery? A clinical study of 1178 patients. Anesth Analg 71:469–474PubMedCrossRefGoogle Scholar
  37. 37.
    Forrest JB, Cahalan MK, Rehder K, Goldsmith CH et al (1990) Multicenter study of general anesthesia. II. Results. Anesthesiology 72:262–268Google Scholar
  38. 38.
    Stuhmeier KD, Mainzer B, Sandmann W, Tarnow J (1992) Isoflurane does not increase the incidence of intraoperative myocardial ischaemia compared with halothane during vascular surgery. Br J Anaesth 69:602–606PubMedCrossRefGoogle Scholar
  39. 39.
    Buffmgton CW, Davis KB, Gillispie S, Pettinger M (1988) The prevalence of steal-prone coronary anatomy in patients with coronary artery disease: an analysis of the coronary artery study registry. Anesthesiology 69:721–727CrossRefGoogle Scholar
  40. 40.
    Foex P, Ryder WA(1979) Effect of CO2 on the systemic and coronary circulations and on coronary sinus blood gas tensions. Bull Europ Physiopath Resp 15:625–638Google Scholar
  41. 41.
    Harkin CP, Pagel PS, Kersten JR, Hettrick DA, Waritier DC (1994) Direct negative inotropic and lusitropic effect of sevoflurane. Anesthesiology 81:156–167PubMedCrossRefGoogle Scholar
  42. 42.
    Prys-Roberts C, Foex P, Biro GP, Roberts JG (1973) Studies of anaesthesia in relation to hypertension V. Adrenergic beta-receptor blockade. Br J Anaesth 45:671–681Google Scholar
  43. 43.
    Prys-Roberts C, Meloche R, Foex P (1971) Studies of anaesthesia in relation to hypertension. 1. Cardiovascular responses of treated and untreated patients. Br J Anaesth 43:122–137Google Scholar
  44. 44.
    Stone JG, Foex P, Sear J, Johnson LL, Khambatta HJ, Triner L (1988) Myocardial ischemia in untreated hypertensive patients: effect of a single small oral dose of a beta-blocker. Anesthesiology 68:495–500PubMedCrossRefGoogle Scholar
  45. 45.
    Dodds TM, Torkelson AT, Fillinger MP, Tosteson A (1994) Prophylactic beta-blockade reduces perioperative myocardial ischemia in high-risk patients undergoing noncardiac surgery. Anesth Analg 78:S92Google Scholar
  46. 46.
    Wallace A, Layug E, Browner W, Hollenberg M, Jain U, Tateo I, Mangano D (1994) SPI Research Group. Randomized double blinded, placebo controlled trial of atenolol for the prevention of perioperative myocardial ischemia in high risk patients scheduled for noncardiac surgery. Anesthesiology 81:A99CrossRefGoogle Scholar
  47. 47.
    Ramsay JG, Cutñeld GR, Francis CM, Devlin WH, Foex P (1986) Halothane-verapamil causes regional myocardial dysfunction in the dog. Br J Anaesth 58:321–326PubMedCrossRefGoogle Scholar
  48. 48.
    Lehot JJ, Leone B, Foex P (1987) Calcium reverses global and regional myocardial dysfunction caused by the combination of verapamil and isoflurane. Acta Anaesth Scand 31: 441–447PubMedCrossRefGoogle Scholar
  49. 49.
    Leone BJ, Philbin DM, Lehot J-J, Wilkins M, Foex P, Ryder WA (1988) Intravenous diltiazem worsens regional function in compromised myocardium. Anesth Analg 67:205–210PubMedCrossRefGoogle Scholar
  50. 50.
    Sear JW, Jewkes C, Tellez J-C, Foëx P (1994) Does the choice of antihypertensive therapy influence haemodynamic responses to induction, laryngoscopy and intubation. Br J Anaesth 73:303–308PubMedCrossRefGoogle Scholar
  51. 51.
    Coriat P, Richer C, Douraki T, Gomez C, Hendricks K, Giudicelli J-F, Viars P (1994) Influence of chronic angiotensin-converting enzyme inhibition on anesthetic induction. Anesthesiology 81:299–307PubMedCrossRefGoogle Scholar
  52. 52.
    Tuman KJ, McCarthy RJ, O’Connor CJ, Holm WE, Ivankovitch AD (1995) Angiotensin-converting enzyme inhibitors increase vasoconstrictor requirements after cardiopulmonary bypass. Anesth Analg 80:473–479PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1996

Authors and Affiliations

  • P. Foёx

There are no affiliations available

Personalised recommendations