Role of Free Radicals in Critical Illness

  • G. P. Novelli
  • A. Di Filippo
  • C. Adembri


The essentials of oxygen radicals (OR°) and the biochemical consequences of their generation are well known. It’s well known also that the oxidative stress and the consequent tissue damage and/or diseases are due to an imbalance between OR° and biological defenses against them (1-4).


Electron Spin Resonance Septic Shock Multiple Organ Failure Bacterial Translocation Multiple Organ Dysfunction Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Autor AP (1982) Pathology of oxygen. Academic, New YorkGoogle Scholar
  2. 2.
    Taylor AE, Matalón S, Ward PA (1986) Physiology of oxygen radicals. American Physiological SocietyGoogle Scholar
  3. 3.
    Rice-Evans CA, Burdon RH (1994) Free radical damage and its control. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Das DK, Essman WB (1990) Oxygen radicals: systemic events and disease processes. Karger, BaselGoogle Scholar
  5. 5.
    Novelli GP (1992) Oxygen radicals in experimental shock: effects of spin-trapping nitrones in ameliorating shock pathophysiology. Crit Care Med 20:449–507CrossRefGoogle Scholar
  6. 6.
    Janzen EG, Kotake Y, Hinton RD (1992) Stabilities of hydroxyl radical spin adducts of PBN- type spin traps. Free Radie Biol Med 12:169–173CrossRefGoogle Scholar
  7. 7.
    Yudai Y, Tanaka J, Suzuki K et al (1989) Inhibitory effects of non steroidal anti-inflammatory drugs on superoxide generation. Chem Pharm Bull 39:1075–1077CrossRefGoogle Scholar
  8. 8.
    Mohsenin V, Gee JBL (1989) Oxidation of α1-protease inhibitor: role of lipid peroxidation products. J Appl Physiol 66:2211–2215PubMedCrossRefGoogle Scholar
  9. 9.
    Redi H, Gasser H, Hallstrom S et al (1993) Radical related cell injury. In: Schlag G, Redi H (eds) Pathophysiology of shock, sepsis and organ failure. Springer, Berlin Heidelberg New York, pp 92–110Google Scholar
  10. 10.
    Novelli GP, Bracciotti G, Falsini S (1990) Spin-trappers and vitamin E prolong endurance to muscle fatigue in mice. Free Radie Biol Med 8:9–13CrossRefGoogle Scholar
  11. 11.
    Novelli GP, De Gaudio AR, Paternostro E et al (1993) Il significato dei radicali liberi dell’ossigeno nel trauma del sistema nervoso centrale. Minerva Anestesiol 59:719–731PubMedGoogle Scholar
  12. 12.
    Zini I, Tomasi A, Grimaldi R et al (1989) Detection of free radicals during brain ischemia and reperfusion by spin trapping and microdialysis. Neurosci Lett 138:279–282CrossRefGoogle Scholar
  13. 13.
    Novelli GP, De Gaudio AR (1983) Oxygen free radicals in shock states. In: Lewis and Haglund (eds) Shock research. Elsevier, Amsterdam, pp 31–42Google Scholar
  14. 14.
    Novelli GP, Angiolini P, Tani R et al (1986) Phenyl-t-butyl-nitrone is active against traumatic shock in rats. Free Radie Res Commun 1:321–327CrossRefGoogle Scholar
  15. 15.
    Cheng HY, Liu T, Feuerstein G et al (1993) Distribution of spin-trapping compounds in rat blood and brain: in vivo microdialysis determination. Free Radie Biol Med 14:243–250CrossRefGoogle Scholar
  16. 16.
    Buettner GR (1987) Spin trapping: ESR parameters of spin adducts. Free Radie Biol Med 3: 159–203Google Scholar
  17. 17.
    Demling RH, Lalonde C (1990) Eariy postbum lipid peroxidation. Effect of ibuprofen and allopurinol. Surgery 107:85–93PubMedGoogle Scholar
  18. 18.
    Kunimoto F, Morita T, Ogawa R et al (1987) Inhibition of lipid peroxidation improves survival rate of endotoxic rats. Circ Shock 21:15–22PubMedGoogle Scholar
  19. 19.
    Bond RF, Haines GA, Johnson G (1988) The effect of allopurinol and catalase on cardiovascular hemodynamics during hemorrhagic shock. Circ Shock 25:139–151PubMedGoogle Scholar
  20. 20.
    McKechnie K, Furman BL, Parratt JR (1986) Modification by oxygen free radical scavengers of the metabolic and cardiovascular effects of endotoxin infusion in conscious rats. Circ Shock 19:429–439PubMedGoogle Scholar
  21. 21.
    Saez JC, Ward PH, Gunther B et al (1984) Superoxide radical involvement in the pathogenesis of bum shock. Circ Shock 12:229–239PubMedGoogle Scholar
  22. 22.
    Broner CW, Shenep JL, Stidham GL et al (1989) Effect of antioxidants in experimental Escherichia coh septicemia. Circ Shock 29:77–92PubMedGoogle Scholar
  23. 23.
    Bitterman H, Aoki N, Lefer AM (1988) Anti-shock effects of human superoxide dismutase in splanchnic artery occlusion shock. Proc Soc Exp Biol Med 188:265–271PubMedGoogle Scholar
  24. 24.
    Brackett DJ, Lai EK, Lerner MR et al (1989) Spin trapping of free radicals produced “in vivo” in heart and liver during endotoxemia. Free Radic Res Commun 7:315–324PubMedCrossRefGoogle Scholar
  25. 25.
    Hamburger SA, McCay PB (1989) Endotoxin-induced mortality in rats is reduced by nitrones. Circ Shock 29:329–334PubMedGoogle Scholar
  26. 26.
    Lloyd SS, Chang AK, Taylor FB et al (1993) Free radicals and septic shock in primates: the role of tumor necrosis factor. Free Radic Biol Med 14:223–242CrossRefGoogle Scholar
  27. 27.
    Jackson SK, Stark JM, Rowlands CC et al (1989) Electron spin resonance detection of oxygen-centred radicals in murine macrophages stimulated with bacterial endotoxin. Free Radic Biol Med 7:165–170PubMedCrossRefGoogle Scholar
  28. 28.
    Simons RK, Maier RV, Lennard ES (1987) Neutrophil function in a rat model of endotoxin- induced lung injury. Arch Surg 122:197–203PubMedCrossRefGoogle Scholar
  29. 29.
    Vespasiano MC, Lewandoski JR, Zimmerman JJ (1993) Longitudinal analysis of neutrophil superoxide anion generation in patients with septic shock. Crit Care Med 21:666–672Google Scholar
  30. 30.
    Yoshikawa T, Takano H, Takahashi S et al (1994) Changes in tissue antioxidant enzyme activities and lipid peroxides in endotoxin-induced multiple organ failure. Circ Shock 42: 53–58PubMedGoogle Scholar
  31. 31.
    Demling R, Nayak U, Ikenami K et al (1994) Comparison between lung and liver lipid peroxidation and mortality after zymosan peritonitis in the rat. Shock 2:222–227PubMedCrossRefGoogle Scholar
  32. 32.
    Llesuy S, Evelson P, Gonzales-Flecha B et al (1994) Oxidative stress in muscle and liver of rats with septic syndrome. Free Radic Biol Med 16:445–451PubMedCrossRefGoogle Scholar
  33. 33.
    Peavy DL, Fairchild EJ (1986) Evidence for lipid peroxidation in endotoxin poisoned mice. Infect Immunol 52:613–616Google Scholar
  34. 34.
    Keller GA, Barke R, Harty JT et al (1985) Decreased hepatic glutathione levels in septic shock. Arch Surg 120:941–945PubMedCrossRefGoogle Scholar
  35. 35.
    Ishizaka A, Stephens K, Takelaar K et al (1988) Pulmonary edema after Escherichia coli peritonitis correlates with thiobarbituric acid reactive materials in bronchoalveolar lavage fluid. Am Rev Respir Dis 137:783–789PubMedGoogle Scholar
  36. 36.
    Morgan RA, Manning PB, Coran AG et al (1988) Oxygen free radical activity during live E. coli septic shock in the dog. Circ Shock 25:319–323PubMedGoogle Scholar
  37. 37.
    Ortolani O, Parlato V, Gravino E et al (1990) The monitorage of the perioxidative damage in patients undergoing cardiac surgery. Acta Anaesth Ital 41 [Suppl 2]: 127–130Google Scholar
  38. 38.
    Weitz ZW, Bimbaum AJ, Sobotka PA et al (1991) High breath pentane concentration during acute myocardial infarction. Lancet 337:933–935PubMedCrossRefGoogle Scholar
  39. 39.
    Poli G, Biasi F, Chiarpotto E et al (1989) Lipid peroxidation in human disease: evidence of red cell oxidative stress after circulatory shock. Free Radic Biol Med 6:167–170PubMedCrossRefGoogle Scholar
  40. 40.
    Keen RR, Stella L, Flanigan DP et al (1989) Differential detection of plasma hydroperoxides in sepsis. Crit Care Med 19:1114–1119CrossRefGoogle Scholar
  41. 41.
    Takeda K, Shimada Y, Amano M et al (1984) Plasma lipid peroxides and alpha tocopherol in critically ill patients. Crit Care Med 12:957–959PubMedCrossRefGoogle Scholar
  42. 42.
    Novelli GP, Casali R, Bonizzoli M et al (1993) Aumento della permeabilità capillare provocato dall’endotossina: protezione con antiossidanti e glutatione. Minerva Anestesiol 59: 211–216PubMedGoogle Scholar
  43. 43.
    Suffredini AF, Shelhamer JH, Neumann RD et al (1992) Pulmonary and oxygen transport effects of intravenously administered endotoxin in normal humans. Am Rev Respir Dis 145: 1398–1403PubMedGoogle Scholar
  44. 44.
    Goris RJA, Boekoltz WKF, Ignas PT et al (1986) Multiple organ failure and sepsis without bacteria. Arch Surg 121:897–901PubMedCrossRefGoogle Scholar
  45. 45.
    Deitch EA, Specian RD, Berg RD (1991) Endotoxin-induced bacterial translocation and mucosal permeability: role of xanthine oxidase, complement activation and macrophage products. Crit Care Med 19:785–791PubMedCrossRefGoogle Scholar
  46. 46.
    Van Bebber IPT, Boekholz WKF, Goris RJA et al (1989) Neutrophil function and lipid peroxidation in a rat model of multiple organ failure. J Surg Res 47:471–475PubMedCrossRefGoogle Scholar
  47. 47.
    Di Filippo A, Scardi S, Consalvo M et al (1994) Valutazione di un modello sperimentale di disfunzione multipla di organo (MODS). Minerva Anestesiol 60:157–164PubMedGoogle Scholar
  48. 48.
    Di Filippo A, Scardi S, Consalvo M et al (1994) L’etano espirato come marker non invasivo della evoluzione della Multiple Organ Dysfunction Syndrome (MODS) sperimentale. Minerva Anestesiol 60:295–303PubMedGoogle Scholar
  49. 49.
    Fächer R, Redl H, Frass M et al (1989) Relationship between neopterin and granulocyte plasma levels and the severity of multiple organ failure. Crit Care Med 17:221–226CrossRefGoogle Scholar
  50. 50.
    Tanaka H, Sugimoto H, Yoshioka T et al (1991) Role of granulocyte elastase in tissue injury in patients with septic shock complicated by multiple organ failure. Ann Surg 213:81–85PubMedCrossRefGoogle Scholar
  51. 51.
    Malhck AA, Ishizaka A, Stephens KE et al (1989) Multiple organ damage caused by tumor necrosis factor and prevented by neutrophil depletion. Chest 95:1114–1120CrossRefGoogle Scholar
  52. 52.
    Maderazo EG, Woronick CL, Hickhin Bothan N et al (1990) Additional evidence of antioxidation as a possible mechanism of neutrophil locomotory dysfunction in blunt trauma. Crit Care Med 18:141–147PubMedCrossRefGoogle Scholar
  53. 53.
    Mainous MR, Xu D, Deitch EA (1993) Role of xanthine oxidase and prostaglandins in inflammatory-induced bacterial translocation. Circ Shock 40:99–104PubMedGoogle Scholar
  54. 54.
    Haglund U, Gerdin B (1991) Oxygen-free radicals (OFR) and circulatory shock. Circ Shock 34:405–411PubMedGoogle Scholar
  55. 55.
    Nonaka A, Manabe T, Kyogoku T et al (1990) Changes in hpid peroxide and oxygen radical scavengers in cerulein-induced acute pancreatitis. Digestion 47:130–137PubMedCrossRefGoogle Scholar
  56. 56.
    Deitch EA, Kemper AC, Specian RD et al (1992) A study of the relationship among survival, gut-origin sepsis, and bacterial translocation in a model of systemic inflammation. J Trauma 32:141–147PubMedCrossRefGoogle Scholar
  57. 57.
    Waiden DL, McCutchan HJ, Enquist EG et al (1990) Neutrophils accumulate and contribute to skeletal muscle dysfunction after ischemia-reperfusion. Am J Physiol 259:H1809-H1812Google Scholar
  58. 58.
    Huribal M, Kumar R, Cunningham ME et al (1994) Endothelin-stimulated monocyte supematants enhance neutrophil superoxide production. Shock 1:184–187PubMedCrossRefGoogle Scholar
  59. 59.
    Spain DA, Wilson MA, Bar-Natan MF et al (1994) Role of nitric oxide in the small intestinal microcirculation during bacteremia. Shock 2:41–46PubMedCrossRefGoogle Scholar
  60. 60.
    Novelli GP, Livi P, Melani AM et al (1994) Il nitrossido nell’insufficienza circolatoria. Minerva Anestesiol 60 [Suppl l]:201–208Google Scholar
  61. 61.
    Tracey KJ, Lowry SF, Cerami A (1988) Cachectin/TNF in septic shock and septic adult respiratory distress syndrome. Am Rev Respir Dis 138:1377–1379PubMedGoogle Scholar
  62. 62.
    Ward PA, Warren JS, Johnson KJ (1988) Oxygen radicals, inflammation and tissue injury. Free Radic Biol Med 5:403–408PubMedCrossRefGoogle Scholar
  63. 63.
    Meier B, Radeke HH, Selle S et al (1989) Human fibroblast release reactive oxygen species in response to interleukin-1 or tumor necrosis factor-a. Biochem J 263:539–545PubMedGoogle Scholar
  64. 64.
    Klausner JM, Paterson IS, Goldman G et al (1991) Interleukin-2-induced lung injury is mediated by oxygen free radicals. Surgery 109:169–175PubMedGoogle Scholar
  65. 65.
    Pogrenbniak HW, Merino MJ, Hahn SM et al (1992) Spin trap salvage from endotoxemia: the role of cytokine down-regulation. Surgery 112:130–139Google Scholar
  66. 66.
    Feuerstein G, Siren AL (1988) Platelet-activating factor and shock. Prog Biochem Pharmacol 22:181–190PubMedGoogle Scholar
  67. 67.
    Bengtsson A, Redl H, Paul E et al (1993) Complement and leukocyte activation in septic baboon. Circ Shock 39:83–88PubMedGoogle Scholar
  68. 68.
    Schirmer WJ, Schirmer JM, Naff GB et al (1988) Systemic complement activation produces hemodynamic changes characteristic of sepsis. Arch Surg 123:316–318PubMedCrossRefGoogle Scholar
  69. 69.
    Reilly PM, Schiller HJ, Bulkley GB (1991) Pharmacologic approach to tissue injury mediated by free radicals and other active oxygen metabolites. Am J Surg 161:488–501PubMedCrossRefGoogle Scholar
  70. 70.
    Suzuki M, Asako H, Kubes P et al (1991) Neutrophil-derived oxidants promote leukocyte adherence in postcapillary venules. Microvasc Res 42:125–138PubMedCrossRefGoogle Scholar
  71. 71.
    Formigh L, Ibba-Manneschi L, Adembri C (1995) Expression of E-selectin in ischemic and reperfused human skeletal muscle. Ultrastruct Pathol 19:193–200CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1996

Authors and Affiliations

  • G. P. Novelli
  • A. Di Filippo
  • C. Adembri

There are no affiliations available

Personalised recommendations