CSF Filtration: Scientific and Clinical Update

  • R. Heusslein
  • S. Rother
  • C. Trömel
  • K.-H. Wollinsky
  • E. Schmutzhard
  • D. Pöhlau


The filtration of cerebrospinal fluid (CSF) was first used by Wollinsky and coworkers in severely affected GBS patients who did not respond to other therapies (1). Recently published data describing in vitro studies, animal experiments and clinical experience in Ulm, Germany (2-6) encouraged other centres to use this technique. We are actually facing an increase in clinical data on CSF filtration (1,6-18) with enlargement of the range of indications as weh as an understanding of the possible mechanism of CSF filtration in various neurological diseases (3-5, 18-22). Even though it is still an experimental approach more than 40 hospitals — predominantly situated in the German speaking countries — are presently using CSF filtration. Clinical experiences are based on the treatment of more than 250 patients. This increased usage is partly based on the fact that the technique is easy to perform and associated with a low incidence of side effects. The main reason for the growing acceptance of CSF filtration, however, is the increasing number of publications indicating that CSF filtration offers the opportunity to intervene in the course of diseases even in late chronic stages.


Multiple Sclerosis Amyotrophic Lateral Sclerosis Multiple Sclerosis Patient Bacterial Meningitis Optic Neuritis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wollinsky KH, Weindler M, Hulser PJ, Geiger P, Matzek N, Mehrkens H-H, Komhuber HH (1991) Liquorpheresis (CSF filtration): an effective treatment in acute and chronic severe autoimmune polyradiculoneuritis (Guillain-Barre syndrome). Eur Arch Psych Clin Neurosci 241:73–76CrossRefGoogle Scholar
  2. 2.
    Hulser PJ, Wietholter H, Wollinsky, KH (1991) Liquorpheresis eliminates blocking factors from cerebrospinal fluid in polyradiculoneuritis (Guillain-Barre syndrome). Eur Arch Psychiatry Clin Neurosci 241:69–72PubMedCrossRefGoogle Scholar
  3. 3.
    Brinkmeier H, Wollinsky KH, Hulser PJ, Seewald MJ, Mehrkens H-H, Kornhuber HH, Rudel R (1992) The acute paralysis in Guillain-Barre syndrome is related to a Na+ channel blocking factor in the cerebrospinal fluid. Pflugers Arch 421:552–557PubMedCrossRefGoogle Scholar
  4. 4.
    Brinkmeier H, Wollinsky KH, Seewald MJ, Hulser P-J, Mehrkens H-H, Kornhuber HH, Riidel R (1993) Factors in the cerebrospinal fluid of multiple sclerosis patients interfering with voltage-dependent sodium channels. Neurosci Lett 156:172–175PubMedCrossRefGoogle Scholar
  5. 5.
    Würz A, Brinkmeier H, Wollinsky KH, Mehrkens HH, Kornhuber HH, Rüdel R (1995) Cerebrospinal fluid and serum from patients with inflammatory polyradiculoneuropathy have opposite effects on sodium channels. Muscle Nerve 18:772–781PubMedCrossRefGoogle Scholar
  6. 6.
    Wollinsky KH, Hülser PJ, Brinkmeier H, Mehrkens HH, Kornhuber HH, Rüdel R (1994) Filtration of cerebrospinal fluid in acute inflammatory polyneuropathy (Guillain-Barré syndrome). Ann Med Interne 145:451–458Google Scholar
  7. 7.
    Wollinsky KH, Hülser PJ, Mauch E, Mehrkens HH, Kornhuber HH (1992) Liquorpherese bei 10 Patienten mit Multipler Sklerose. Verh Dtsch Gesellsch Neurol 7:444–445Google Scholar
  8. 8.
    Wolhnsky KH, Hülser PJ, Brinkmeier H, Mehrkens HH, Kornhuber HH, Rüdel R (1995) Klinische Erfahrungen mit der CSF filtration. Neuropsychiatrie 9 (in press)Google Scholar
  9. 9.
    Haas J, Düzel E, Tendolkar L, Sailer M, Wurster U, Rieger A, Heinze HJ (1995) Cerebrospinal fluid filtration: an experimental therapeutic approach to multiple sclerosis. J Neurol 242 [Suppl]:S118CrossRefGoogle Scholar
  10. 10.
    Haas J, Sailer M, Düzel E, Tendolkar I, Wurster U (1995) Liquorfiltration bei multipler Sklerose: eine experimentelle Therapie. Neuropsychiatrie 9 (in press)Google Scholar
  11. 11.
    Allen C, Kepplinger B, Papst H (1995) CSF filtration (cerebrospinal fluid filtration) bei demyehnisierenden Erkrankungen. Neuropsychiatrie 9 (in press)Google Scholar
  12. 12.
    Gruber F, Pfausler B, Laich E, Vollert H, Brucker B, Schmutzhard E, Deisenhammer E (1995) Einsatz der Liquorfiltration bei Guillain-Barré Syndrom. In: Harms L, Schielke E, Weber JR (eds) 12. Tagung Arbeitsgem Neurol Intensivmed Deutsch Gesellsch Neurol, ANIM, Berlin, pp 194Google Scholar
  13. 13.
    Gruber F, Laich E, Brucker B, Deisenhammer E (1995) Kombinationstherapie Cerebrospinal- flüssigkeits-Filtration/i.v. Immunglobuline bei Guillain-Barré Syndrom. Neuropsychiatrie 9 (in press)Google Scholar
  14. 14.
    Pfausler B, Auckenthaler A, Grubwieser G, Vollert-Rogenhofer H, Schmutzhard E (1994) Miller-Fisher-Syndrom — erfolgreiche Therapie mit Liquorfiltration — ein Fallbericht. Neuropsych 8:41Google Scholar
  15. 15.
    Pfausler B, Schmutzhard E (1995) CSF filtration bei neuroimmunologischen Erkrankungen (GBS, Miller-Fisher Syndrom, zerebraler Lupus erythematodes). Neuropsychiatrie 9 (in press)Google Scholar
  16. 16.
    Pfausler B, Grubwieser G, Bösch S, Vollert H, Herold M, Schmutzhard E (1995) Cerebrospinal fluid-filtration reduces TNF in bacterial meningitis-CSF. Eur J Neurol (in press)Google Scholar
  17. 17.
    Pfausler B, Bösch S, Grubwieser G, Vollert H, Greil R, Hagn C, Schmutzhard E (1995) Multimodal therapy in life-threatening cerebral lupus erythematosus: the benefit of cerebrospinal fluid pheresis. Int Arch Allergy Immunol 563 (in press)Google Scholar
  18. 18.
    Schmutzhard E, Grubwieser G, Pfausler B (1995) Liquorfiltration — eine adjuvante therapeutische Strategie bei der bakteriellen Meningitis. Neuropsychiatrie 9 (in press)Google Scholar
  19. 19.
    Trömel C, Gnatzy W (1995) Elektrophysiologische und morphologische Veränderungen an isolierten Spinalwurzeln nach Applikation von GBS-, MS- und ALS-Liquor. Neuropsychiatrie 9 (in press)Google Scholar
  20. 20.
    Dobransky T, Amouri R, Wollinsky KH, Westarp ME, Rieger F (1995) Influence of filtration on a new gliotoxic activity in cerebrospinal fluid from multiple sclerosis patients. Neuropsychiatrie 9 (in press)Google Scholar
  21. 21.
    Amouri R, Dobransky T, Benjelloun N, Rieger F (1995) A new ghotoxic activity and its implications for the immunopathogenesis of multiple sclerosis. Neuropsychiatrie 9 (in press)Google Scholar
  22. 22.
    Trömel C, Gnatzy W (1995) Extracellular records of bovine spinal root bundles incubated with cerebrospinal fluid of patients as an animal model for blocking effects in neurological diseases. In: Eisner N, Menzel R (eds) Proceedings of the 23rd Göttingen Neurobiology Conference: Learning and Memory. Thieme, Stuttgart, New York 2:855Google Scholar
  23. 23.
    Rother S, Knoblauch KD, Kirschfink M (1995) Filtration von Liquor cerebrospinahs (CSF filtration): Technisches Konzept und Filtrationseffizienz unter in vitro Bedingungen. Neuropsychiatrie 9 (in press)Google Scholar
  24. 24.
    Rother S, Kirschfink M (1994) CSF filtration: a new therapeutical concept — technique and scientific background. In: Gullo (ed) APICE 1994. Fogliazza editore, Milano vol 9, pp 577–586Google Scholar
  25. 25.
    Foley PL, Takenaka K, Kasselli NF, Lee KS (1994) Cytotoxic effects of bloody cerebrospinal fluid on cerebral endothelial cells in culture. J Neurosurg 81:87–92PubMedCrossRefGoogle Scholar
  26. 26.
    Waxman SG (1995) Sodium channel blockade by antibodies: a new mechanism of neurological disease? Ann Neurol 37:421–423PubMedCrossRefGoogle Scholar
  27. 27.
    Härtung HP, Schwenke C, Bitter-Suermann D, Toyka KV (1987) Guillain-Barre syndrome: activated complement components C3a and C5a in CSF. Neurology 37:1006–1009PubMedGoogle Scholar
  28. 28.
    Sanders ME, Koski CL, Robbins D, Shin ML, Frank MM, Joiner KA (1986) Activated terminal complement in cerebrospinal fluid in Guillain-Barre syndrome and multiple sclerosis. J Immunol 136:4456–4459PubMedGoogle Scholar
  29. 29.
    Simone IL, Annunziata P, Maimone D, Liguori M, Leante R, Livrea P (1993) Serum and CSF anti-GM 1 antibodies in patients with Guillain-Barre syndrome and chronic inflammatory demyehnating polyneuropathy. J Neurol Sci 114:49–55PubMedCrossRefGoogle Scholar
  30. 30.
    Schwerer B, Lassmann H, Kitz K, Bernheimer H (1986) Ganghoside GMl, a molecular target for immunological and toxic attacks: similarity of neuropathological lesions induced by ganghoside-antisemm and cholera toxin. Acta Neuropathol (Berl) 72:55–61CrossRefGoogle Scholar
  31. 31.
    Graus F, Abos J, Mazzara R, Pereira A (1990) Effect of plasmapheresis on serum and CSF autoantibody levels in CNS paraneoplastic syndrome. Neurology 40:1621–1623PubMedGoogle Scholar
  32. 32.
    Söderström M, Link H, Sun JB, Fredrikson S, Wang ZY, Huang WX (1994) Autoimmune T-cell repertoire in optic neuritis and multiple sclerosis: T-cells recognising multiple myelin proteins are accumulated in cerebrospinal fluid. J Neurol Neurosurg Psychiatry 57:544–551PubMedCrossRefGoogle Scholar
  33. 33.
    Härtung HP, Jung S, Stoll G et al (1992) Inflammatory mediators in demyehnating disorders of the CNS and PNS. J Neuroimmunol 40:197–210PubMedCrossRefGoogle Scholar
  34. 34.
    Weiler M, Stevens A, Sommer N, Melms A, Dichgans J, Wiethölter H (1991) Comparative analysis of cytokine patterns in immunological, infectious, and oncological neurological disorders. J Neurol Sci 104:215–221CrossRefGoogle Scholar
  35. 35.
    Hauser SL, Doolittle TH, Lincoln R, Brown RH, Dinarello CA (1990) Cytokine accumulations in CSF of multiple sclerosis patients: frequent detection of interleukin-1 and tumor necrosis factor but not interleukin-6. Neurology 40:1735–1739PubMedGoogle Scholar
  36. 36.
    Benvenuto R, Paroli M, Buttinelh C et al (1991) Tumor necrosis factor-alpha synthesis by cerebrospinal fluid-derived T cell clones from patients with multiple sclerosis. Clin Exp Immunol 84:97–102PubMedGoogle Scholar
  37. 37.
    Sharief MK, Hentges R (1991) Association between tumor necrosis factor-alpha and disease progression in patients with multiple sclerosis. N Engl J Med 325:467–472PubMedCrossRefGoogle Scholar
  38. 38.
    Linington C, Morgan BP, Scolding NJ, Wilkins P, Piddlestone S, Compston DAS (1989) The role of complement in the pathogenesis of experimental allergic encephalomyelitis. Brain 112:895–911PubMedCrossRefGoogle Scholar
  39. 39.
    Catz I, Warren KG (1986) Intrathecal synthesis of autoantibodies to myehn basic protein in multiple sclerosis. Can J Neurol Sci 13:21–24PubMedGoogle Scholar
  40. 40.
    Warren KG, Catz I (1994) Relative frequency of autoantibodies to myelin basic protein and proteolipid protein in optic neuritis and multiple sclerosis cerebrospinal fluid. J Neurol Sci 121:66–73PubMedCrossRefGoogle Scholar
  41. 41.
    Kimura F, Smith RG, Delbono O, Nyermoi O, Schneider T, Nastainczyk W, Hoffmann F, Stefani E, Appel SH (1994) Amyotrophic lateral sclerosis patient antibodies label Ca++ channel alpha 2 subunit. Ann Neurol 35:164–171PubMedCrossRefGoogle Scholar
  42. 42.
    Apostolski S, Lator N (1993) Clinical syndromes associated with anti-GMl antibodies. Semin Neurol 13:264–268PubMedCrossRefGoogle Scholar
  43. 43.
    Apostolski S, Nikolic, Bugarski-Prokophevic C, Miletic V, Pavlovic S (1991) Serum and CSF immunological findings in ALS. Acta Neurol Scand 83:96–98PubMedCrossRefGoogle Scholar
  44. 44.
    Tsuboi Y, Yamada Y (1994) Increased concentration of C4d complement protein in CSF in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 157:859–861CrossRefGoogle Scholar
  45. 45.
    Rothstein JD, Tsai G, Kuncl RW et al (1990) Abnormal excitatory aminoacid metabohsm in amyotrophic lateral sclerosis. Ann Neurol 28:18–25PubMedCrossRefGoogle Scholar
  46. 46.
    Nagaraja TN, Gourie-Devi M, Nalini A, Raju TR (1994) Neurofilament phosphorylation is enhanced in cultured chick spinal cord neurons exposed to cerebrospinal fluid from amyotrophic lateral sclerosis patients. Acta Neuropathol 88:349–352PubMedCrossRefGoogle Scholar
  47. 47.
    Couratier P, Hugon J, Sindou P, Vallat JM, Dumas M (1993) Cell culture evidence for neuronal degeneration in amyotrophic lateral sclerosis being linked to glutamate AMPA/kainate receptors. Lancet 341:265–268PubMedCrossRefGoogle Scholar
  48. 48.
    Pestronk A, Adams RN, Clawson L, Comblatz D, Kuncl RW, Griffin D, Drachman DB (1988) Serum antibodies to GMl gangliosides in amyotrophic lateral sclerosis. Neurology 38: 1457–1461PubMedGoogle Scholar
  49. 49.
    Santoro M, Thomas FP, Fink ME, Lange DJ, Uncini A, Wadia NH, Latov N, Hays AP (1990) IgM deposits at nodes of Ranvier in a patient with amyotrophic lateral sclerosis, anti-GMl antibodies and multifocal motor conduction block. Ann Neurol 28:373–377PubMedCrossRefGoogle Scholar
  50. 50.
    Santoro M, Uncini A, Corbo M, Staugaitis SM, Thomas FP, Hays AP, Latov N (1992) Experimental conduction block induced by serum from a patient with anti-GMl antibodies. Ann Neurol 31:385–390PubMedCrossRefGoogle Scholar
  51. 51.
    Arasaki K, Kusunoki S, Kudo N, Kanazawa I (1993) Acute conduction block in vitro following exposure to antiganglioside sera. Muscle Nerve 16:587–593PubMedCrossRefGoogle Scholar
  52. 52.
    Durand ML, Calderwood SB, Weber DJ, Miller SI, Southwick FS, Caviness VS, Swartz MN (1993) Acute bacterial meningitis in adults. A review of 493 episodes. N Engl J Med 328: 21–28PubMedCrossRefGoogle Scholar
  53. 53.
    Pfister HW (1993) Akut-entzündliche Erkrankungen des Zentralnervensystems. Akt Neurol 20:83–88CrossRefGoogle Scholar
  54. 54.
    Pfister HW, Feiden W, Einhäupl KM (1993) Spectrum of complications during bacterial meningitis in adults. Arch Neurol 50Google Scholar
  55. 55.
    Klein JO, Feigin RD, McCracken GHJ (1986) Report of the task force on diagnosis and management of meningitis. Pediatrics 78:959–982PubMedGoogle Scholar
  56. 56.
    Täuber MG, Sachdeva M, Kennedy SL, Loetscher H, Lesslauer W (1992) Toxicity in neuronal cells caused by cerebrospinal fluid from pneumococcal and gram-negative meningitis. J Infect Dis 166:1045–1050PubMedCrossRefGoogle Scholar
  57. 57.
    Saukkonen K, Sande S, Cioffe C (1990) The role of cytokines in the generation of inflammation and tissue damage in experimental gram-positive meningitis. J Exp Med 171: 439–448PubMedCrossRefGoogle Scholar
  58. 58.
    Leist TP, Frei K, Kam-Hansen S, Zinkemagel RM, Fontana A (1988) Tumor necrosis factor alpha in cerebrospinal fluid during bacterial, but not viral meningitis. J Exp Med 167: 1743–1748PubMedCrossRefGoogle Scholar
  59. 59.
    Tuomanen E, Liu H, Hengstler B, Zak O, Tomasz A (1985) The induction of meningeal inflammation by components of the pneumococcal cell wall. J Infect Dis 151:859–868PubMedCrossRefGoogle Scholar
  60. 60.
    Tuomanen E (1993) Bakterielle Meningitis und die Blut-Him-Schranke. Spektr Wissensch 4:86–90Google Scholar
  61. 61.
    Arditi M, Abies L, Yogev R (1989) Cerebrospinal fluid endotoxin levels in children with H. influenzae meningitis before and after administration of intravenous ceftriaxone. J Infect Dis 160:1005–1111PubMedCrossRefGoogle Scholar
  62. 62.
    Tunkel AR, Wispelwey B, Scheid M (1990) Bacterial meningitis: recent advances in pathophysiology and treatment. Ann Intern Med 112:610–623PubMedGoogle Scholar
  63. 63.
    Quagliarello V, Scheid M (1992) Bacterial meningitis: pathogenesis, pathophysiology and progress. N Engl J Med 327:864–872PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1996

Authors and Affiliations

  • R. Heusslein
  • S. Rother
  • C. Trömel
  • K.-H. Wollinsky
  • E. Schmutzhard
  • D. Pöhlau

There are no affiliations available

Personalised recommendations