Evolution of Theories and Interpretation of Respiratory Mechanics Data

  • J. Milic-Emili


The simplest mechanical model of the respiratory system was introduced in 1950 by Otis et al. (1). It consists of a single compartment of constant elastance (E) served by a pathway of constant flow resistance (R). It is based on the assumption that the mechanical properties of the respiratory system are independent of lung volume and flow, and that inertial factors are negligible. These are reasonable assumptions for normal resting breathing, and even the gross overimplification of a single compartment has been useful for making quahtative predictions (2).


Chest Wall Respiratory System Respiratory Mechanic Chest Wall Mechanic Lung Deflation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Otis AB, Fenn WO, Rahn H (1950) The mechanics of breathing in man. J Appl Physiol 2: 592–607PubMedGoogle Scholar
  2. 2.
    Mead J (1960) Control of respiratory frequency. J Appl Physiol 15:325–336Google Scholar
  3. 3.
    Rahn H, Otis AB, Chadwick LE, Fenn WO (1946) The pressure-volume diagram of the thorax and lung. Am J Physiol 146:161–178PubMedGoogle Scholar
  4. 4.
    Briscoe WA, DuBois AB (1958) The relationship between airway resistance, airway conductance and lung volume in subjects of different age and body size. J Clin Invest 37: 1279–1285PubMedCrossRefGoogle Scholar
  5. 5.
    Rohrer F (1915) Der Strömungswiderstand in den menschlichen Atemwegen und der Einfluss der unregelmässigen Verzweigung des Bronchialsystems auf des Atmungsverlauf verschiedenen Lungenbezirken. Arch Gesamte Physiol Mens Tiere 162:225–299CrossRefGoogle Scholar
  6. 6.
    Mead J, Agostoni E (1964) Dynamics of breathing. In: Fenn WO, Rahn H (eds) Respiration, vol. 1. Washington, DC, American Physiological Society, pp 411–427. Handbook of physiology. Section 3Google Scholar
  7. 7.
    D’Angelo E, Prandi E, Tavola M, Calderini E, Milic-Emili J (1994) Chest wall interrupter resistance in anesthetized paralyzed subjects. J Appl Physiol 77:883–887PubMedGoogle Scholar
  8. 8.
    Bates JHT, Ludwig MS, Sly PD, Brown K, Martin JG, Fredberg JJ (1988) Interrupter resistance elucidated by alveolar pressure measurement in open-chest normal dogs. J Appl Physiol 65:408–414PubMedGoogle Scholar
  9. 9.
    Grimby G, Takishima T, Graham W, Macklem P, Mead J (1968) Frequency dependence of flow resistance in patients with obstructive lung disease. J CUn Invest 47:1455–1465CrossRefGoogle Scholar
  10. 10.
    Otis AB, McKerrow CB, Bartlett RA, Mead J, Mcllroy MB, Selverstone NJ, Radford EP (1956) Mechanical factors in distribution of pulmonary ventilation. J Appl Physiol 8:427–443PubMedGoogle Scholar
  11. 11.
    Mount LE (1955) The ventilation flow-resistance and compliance of rat lungs. J Physiol (Lond) 127:157–167Google Scholar
  12. 12.
    Bates JHT, Brown K, Kochi T (1987) Identifying a model of respiratory mechanics using the interrupter technique. In: Proceedings of the Ninth American Conference I.E.E.E. Engineering Medical Biology Society, pp 1802–1803Google Scholar
  13. 13.
    Bates JHT, Decramer M, Chartrand D, Zin WA, Boddener A, Milic-Emili J (1985) Volume-time profile during relaxed expiration in the normal dog. J Appl Physiol 59:732–737PubMedGoogle Scholar
  14. 14.
    Fredberg JJ, Stamenovic D (1989) On the imperfect elasticity of lung tissue. J Appl Physiol 67:2408–2419PubMedGoogle Scholar
  15. 15.
    Hildebrandt J (1970) Pressure-volume data of cat lung interpreted by a plastoelastic linear viscoelastic model. J Appl Physiol 28:365–372PubMedGoogle Scholar
  16. 16.
    Barnas GM, Yoshiro K, Loring STL, Mead J (1987) Impedance and relative displacements of relaxed chest wall up to 4 Hz. J Appl Physiol 62:71–81PubMedGoogle Scholar
  17. 17.
    D’Angelo E, Calderini E, Torri G, Robatto F, Bono D, MiUc-Emili J (1989) Respiratory mechanics in anesthetized-paralyzed humans: effects of flow, volume and time. J Appl Physiol 67:2556–2564PubMedGoogle Scholar
  18. 18.
    D’Angelo E, Robatto FM, Calderini E, Tavola M, Bono D, Torri G, Milic-Emi U J (1991) Pulmonary and chest wall mechanics in anesthetized paralyzed humans. J Appl Physiol 70: 2602–2610PubMedGoogle Scholar
  19. 19.
    Hantos Z, Daroczy B, Suki B, Galgoczy G, Csendes T (1986) Forced oscillatory impedance of the respiratory system at low frequencies. J Appl Physiol 60:123–132PubMedCrossRefGoogle Scholar
  20. 20.
    Eissa NT, Ranieri VM, Corbeil C, Chassé M, Robatto FM, Braidy J, Milic-Emih J (1991) Analysis of behavior of the respiratory system in ARDS patients: effects of flow, volume, and time. J Appl Physiol 70:2719–2729PubMedCrossRefGoogle Scholar
  21. 21.
    Mead J (1969) Contribution of compliance of airways to frequency-dependent behaviour of lung. J Appl Physiol 26:670–673PubMedGoogle Scholar
  22. 22.
    Bates JHT, Baconnier P, Milic-Emili J (1988) A theoretical analysis of interrupter technique for measuring respiratory mechanics. J Appl Physiol 64:2204–2214PubMedGoogle Scholar
  23. 23.
    Mortola JP, Magnante D, Saetta M (1985) Expiratory pattern of newborn mammals. J Appl Physiol 58:528–533PubMedGoogle Scholar
  24. 24.
    Guérin C, Coussa M-L, Eissa NT, Corbeil C, Chassé M, Braidy J, Matar N, Milic-Emih J (1993) Lung and chest wall mechanics in mechanically ventilated COPD patients. J Appl Physiol 74:1570–1580PubMedGoogle Scholar
  25. 25.
    Brody AW (1954) Mechanical compliance and resistance of the lung-thorax calculated from the flow recorded during passive expiration. Am J Physiol 178:189–196PubMedGoogle Scholar
  26. 26.
    Mcllroy MB, Tiemey DF, Nadel JA (1963) A new method of measurement of comphance and resistance of lungs and thorax. J Appl Physiol 18:424–427Google Scholar
  27. 27.
    Zin WA, Pengelly LD, Milic-Emili J (1982) Single-breath method for measurement of respiratory system mechanics in anesthetized animals. J Appl Physiol 52:1266–1271PubMedGoogle Scholar
  28. 28.
    Chelucci GL, Brunet F, Dall’Ava-Santucci J, Dhainaut JF, Paccaly D, Armaganidis A, Milic-Emih J, Lockhart A (1991) A single-compartment model cannot describe passive expiration in intubated, paralyzed humans. Eur Respir J 4:458–464PubMedGoogle Scholar
  29. 29.
    D’Angelo E, Prandi E, Mihc-Emili J (1993) Dependence of maximal flow-volume curves on time-course of preceding inspiration. J Appl Physiol 75:1155–1159PubMedGoogle Scholar
  30. 30.
    D’Angelo E, Prandi E, Marazzini L, Milic-Emi U J (1994) Dependence of maximal flow-volume curves on time course of preceding inspiration in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 150:1581–1586PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1996

Authors and Affiliations

  • J. Milic-Emili

There are no affiliations available

Personalised recommendations