Advertisement

Chlamydia pneumoniae Microbiology

  • Jeanne Orfila

Abstract

The discovery of a new micro-organism is an exciting experience for the microbiologist. Once a hard work, it is now made easier by the new techniques. This is what happened for Chlamydia pneumoniae.

Keywords

Chlamydia Trachomatis Elementary Body Major Outer Membrane Protein Human HSP60 Reticulate Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grayston JT, Kuo CC, Campbell LA, Wang SP (1989) Chlamydia pneumoniae sp nov. for Chlamydia sp strain TWAR. Intern J Syst Bacteriol 39: 88–90CrossRefGoogle Scholar
  2. 2.
    Grayston JT, Kuo CC, Wang SP, Altman DJ (1986) A new Chlamydia psittaci strain TWAR isolated in acute respiratory tract infections. N Engl J Med 315: 161–168PubMedCrossRefGoogle Scholar
  3. 3.
    Grayston JT, Wang SP, Kuo CC, Campbell LA (1989) Current knowledge on Chlamydia pneumoniae strain TWAR: an important cause of pneumonia and other acute respiratory diseases. Eur J Clin Microbiol Inf Dis 8: 191–202CrossRefGoogle Scholar
  4. 4.
    Lepinay A, Robineaux R, Orfila J, Moncel C, Coet H, Boutry JM (1971) Analyse en microcinématographie à contraste de phase du développement intracellulaire de Chlamydia psittaci. Archiv Fur die gesamte virusforschung 35: 161–176PubMedCrossRefGoogle Scholar
  5. 5.
    Lepinay A, Orfila J, Anteunis A, Boutry JM, Orme-Rosselli L, Robineaux R (1970) Etude en microscopie électronique du développement et de la morphologie de l’agent de l’Ornithose dans les macrophages de souris. Ann Inst Pasteur 119: 222–231Google Scholar
  6. 6.
    Zhang JP, Stephens RS (1992) Mechanism of Chlamydia trachomatis attachment to eukarytic host cell. Cell 69: 861–869PubMedCrossRefGoogle Scholar
  7. 7.
    Campbell LA, Kuo CC, Grayston JT (1987) Characterisation of the new Chlamydia agent, TWAR, as a unique organism by restriction endonuclease analysis and DNA-DNA hybridization. J Clin Microbiol 25: 1911–1916PubMedGoogle Scholar
  8. 8.
    Carter MW, Mahadawi AL, Giles IG, Treharne JD, Ward ME, Clarke IN (1991) Nucleotide sequence and taxonomic value of the major outer membrane protein gene of Chlamydia pneumoniae IOL 207. J Gen Microbiol 137: 465–475PubMedGoogle Scholar
  9. 9.
    Kanamoto Y, Jijima Y, Miyashita N, Matsumoto A, Sanako T (1993) Antigenic characterisation of Chlamydia pneumoniae isolated in Hiroshima Japan. Microbiol Immunol 37: 495–498PubMedGoogle Scholar
  10. 10.
    Popov VL, Shatkin AA, Pankratova VN, Smirnova NS et al (1991) Ultrastructure of Chlamydia pneumoniae in cell culture. FEMS Microbiol Lett 84: 129–134CrossRefGoogle Scholar
  11. 11.
    Moulder JW (1991) Interaction of Chlamydiae and host cell in vitro. Microbiol Rev 55: 143–190PubMedGoogle Scholar
  12. 12.
    Brade H, Baumann M, Brade L, Fu Y et al (1992) Chlamydial LPS structure and antigenic properties. In: Mardh PA, La Placa M, Ward M (eds) Second proceeding of the European Society for Chlamydia research. Società Editrice Esculapio, Bologna, Italy, pp 10–13Google Scholar
  13. 13.
    Nurminen M, Leinonen M, Saikku P, Makela PH (1983) The genus specific antigen of Chlamydia resemblance to the lipopolysaccharide of enteric bacteria. Science 220: 1279–1281PubMedCrossRefGoogle Scholar
  14. 14.
    Mamat U, Baumann M, Schmidt G, Brade H (1993) The genus specific lipopolysaccharide epiope of Chlamydia is assembled in Chlamydia psittaci and Chlamydia trachomatis by glycotransferase of low homology. Molecular Microbiol 10: 935–941CrossRefGoogle Scholar
  15. 15.
    Schrame KS, Kazar S, Sadecky E (1980) Serological cross reaction of lipid A components of LPS isolated from Chlamydia psittaci and Coxiella burneti. Acta virologica 24: 224–230Google Scholar
  16. 16.
    Poulakkinen M, Parker J, Kuo CC, Grayston JT, Campbell LA (1994) Characterization of a Chlamydia pneumoniae epitope recognized by species specific monoclonal antibodies. Proceedings of the Eighth International Symposium on Human Chlamydial Infections. Orfila J et al (eds) Società Editrice Esculapio, Bologna, Italy, pp 185–188Google Scholar
  17. 17.
    Campbell LA, Kuo CC, Grayston JT (1990) Structural and antigenic analysis of Chlamydia pneumoniae. Inf Immun 58: 93–97Google Scholar
  18. 18.
    Christansen L, Ostergaard L, Birkelund S (1994) Analysis of the Chlamydia pneumoniae surface. Proceedings of the Eighth International Symposium on Human Chlamydial Infections. Orfila J et al (eds) Società Editrice Esculapio Bologna, Italy, pp 173–177Google Scholar
  19. 19.
    Gaydos CA, Quinn TC, Bobo La, Eiden JJ (1992) Similarity of Chlamydia pneumoniae strains in the variable domain IV region of the major outer membrane protein gene. Inf Immun 60: 5319–5323Google Scholar
  20. 20.
    Wang SP, Grayston JT (1994) The similarity of Chlamydia pneumoniae isolates as antigen in the microimmunofluorescence test. Proceedings of the Eighth International Symposium on Human Chlamydial Infections. Orfila J et al (eds) Società Editrice Esculapio, Bologna, Italy pp 181–184Google Scholar
  21. 21.
    Kornak JM, Kuo CC, Campbell LA (1991) Sequence analysis of the gene encoding the Chlamydia pneumoniae DNA k protein homolog. Infect Immun 59: 721–725PubMedGoogle Scholar
  22. 22.
    Black CN, Petterson B, Messmer TO, Storey C, Uhlen M, Olsvik O (1994) Identification of three types of 16SrDNA genes in Chlamydia pneumoniae strains of human and non human origin. Proceedings of the Eighth International Symposium on Human Chlamydial Infections. Orfila Jet al (eds) Società Editrice Esculapio, Bologna, Italy, pp 193–196Google Scholar
  23. 23.
    Black CN, Johnson JE, Farshy CE, Brown TM, Berdal BP (1991) Antigenic variation among strains of Chlamydia pneumoniae. J Clin Microbiol 29: 1312–1316PubMedGoogle Scholar
  24. 24.
    Storey C, Lusher M, Yates P, Richmond S (1993) Evidence for Chlamydia pneumoniae of non human origin. J Gen Microbiol 139: 2621–2626PubMedGoogle Scholar
  25. 25.
    Danilition SL, Maclean IW, Peeling R, Winston S, Brunham RC (1990) The 75-Kilodalton protein of Chlamydia trachomatis: a member of the heat shock protein 70 family? Inf Immun 58: 189–196Google Scholar
  26. 26.
    Peeling RW, Toye B, Claman P, Jessamine P, Laferierre C (1994) Seropositivity to Chlamydia pneumoniae and antibody response to the chlamydial heat shock protein. Proceedings of the Eighth International Symposium on Human Chlamydial Infections. Orfila J et al (eds) Società Editrice Esculapio, Bologna, Italy, pp 502–505Google Scholar
  27. 27.
    Toye B, Laferriere C, Claman P, Jessamine P, Peeling R (1993) Association between antibody response to the chlamydial heat schock proteins and tubal infertility. J Infect Dis 168: 1236–1240PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1995

Authors and Affiliations

  • Jeanne Orfila

There are no affiliations available

Personalised recommendations