Advertisement

Safety and HBO Therapy

  • P. Pelaia
  • M. Rocco
  • E. Di Lauro
  • G. Spadetta

Abstract

Multiplace HBO chambers (MHCs) [1] are Pieces of apparatus that allow gas mixtures to be administered at pressures above normal atmospheric pressure [1, 2]. A hyperbaric chamber is considered as a piece of pressurized equipment and is therefore controlled by precise manufacturing regulations [1–6]. Medical demands require spacious and comfortable construction of MHCs as well as their being well climatized, soundproofed and having easy access. They must also be complete from the fabrication, installation and ambiental design point of view.

Keywords

Hyperbaric Oxygen Therapy Hyperbaric Chamber Intermittent Mandatory Ventilation Synchronize Intermittent Mandatory Ventilation Aviat Space Environ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hamilton RW (1983) Monoplace and multiplace chambers: the role of each. In: Hamilton RW, Pierce EC (ed) Hyperbaric Oxygen in emergency medical Care. UMS publication no 63, Bethesda, pp 91–101Google Scholar
  2. 2.
    Hamilton RW, Sheffield PJ (1977) Hyperbaric chamber safety. In: Davis JC, Hunt TK (ed) Hyerbaric oxygen therapy. UMS, Bethesda, pp 47–6oGoogle Scholar
  3. 3.
    Reimers SD (1983) Optional safety in clinical hyperbaric chambers. In: Hamilton RW, Pierce EC (ed) Hyperbaric oxygen in emergency medical care. UMS publication no 63, Bethesda, pp 102–114Google Scholar
  4. 4.
    Bargiarelli JP (1994) What is a good hyperbaric chamber for therapeutic use? Proc 1St European Consensus Conference on Hyperb Med, Lille, pp 257–267Google Scholar
  5. 5.
    ANSI/ASME PVHO (1987) 1. Safety standard for pressure vessels for human occupancy. NY: American Society of Mechanical EngineersGoogle Scholar
  6. 6.
    ASME (1980) Boiler and Pressure Vessel Code, Section VIII, Division 1 Pressure Vessels. NY: American Society of Mechanical EngineersGoogle Scholar
  7. 7.
    Pelaia P, Ruocco F, Sposato M (1989) La sicurezza negli impianti iperbarici. In: Oriani G, Faglia E (ed) Ossigenoterapia Iperbarica ed Applicazioni Cliniche. SIO, pp 175–183Google Scholar
  8. 8.
    ANSI/ASME PVHO (1987) 2 Piping sistems for pressure vessels for human occupancy. NY: American Society of Mechanical EngineersGoogle Scholar
  9. 9.
    Meliet JL, Macchi JP (1994) Regulations in the hyperbaric environment. Proc 1st European Consensus Conference on Hyperb Med, Lille, pp 231–242Google Scholar
  10. 10.
    Le Pechon JC (1994) Safety in the hyperbaric environment. Proc 1st European Consensus Conference on Hyperb Med, Lille, pp 243–256Google Scholar
  11. 11.
    NFPA (1979) Fire hazards in oxygen-enriched atmospheres 1979. NFPA No 53 M. Boston: National Fire Protection AssnGoogle Scholar
  12. 12.
    Alger RS, Nichols JR (1971) Survey of fires in hypobaric and hyperbaric chambers. NOLTR 71–128. Silver Spring, M: Naval Ordinance Lab, JulyGoogle Scholar
  13. 13.
    NFPA 99 code Healt Care Facilities (1987) Safety standards for hyperbaric facilities. Boston National Fire Protection AssnGoogle Scholar
  14. 14.
    NFPA Hyperbaric facilities (1979) NFPA No 56 D. Boston: National Fire Protection AssnGoogle Scholar
  15. 15.
    Pilotti L, Ambrosio F, Ginaldi A, Rusca F, Giron GP (1991) Sicurezza in iperbarismo. Minerva Anestesiol 57: 277–287PubMedGoogle Scholar
  16. 16.
    Kalinkin VI, Melikhov AS, Tretyakov VA, Flankin EV (1983) Conditions of materials fire safety usage in medical hyperbaric chamber. Hyperb Oxygen Rev 4 (1): 16–18Google Scholar
  17. 17.
    Stephen D, Reimers PE (1983) Operational safety in clinical hyperbaric chambers. Hyperb Oxygen Rev 4 (2): 113–125Google Scholar
  18. 18.
    Rusca F, Ambrosio F, Pittoni G, Dengo B, Giron GP, Schiavon M (1988) An original approach to oxygen delivery during HBO. Underwater Med 3: 217–218Google Scholar
  19. 19.
    Beaman JT, Wang SY, Masada GY (1987) Cycle time control of an on-board oxygen generation system. Aviat Space Environ Med 58: 1225–1229PubMedGoogle Scholar
  20. 20.
    Ohresser Ph, Wattei F, Mathieu D, Bergmann E (1990) Réanimation en chambre hyperbare. In Oxygénotherapie hyperbare et réanimation. Wattel F, Mathieu D (ed) Masson, Paris 241–250Google Scholar
  21. 21.
    Halcomb JR, Matos-Navarro AY, Goldmann RW (1988) Critical care in hyperbaric chamber. In: Davis JC, Hunt TK (ed) Problem wounds. The role of oxygen. Elsevier, New York, pp 187–209Google Scholar
  22. 22.
    Pelaia P, Rocco M, Malpieri R, Occhigrossi F, Mattia C, Oriani G (1991) Il supporto tecnologico nel trattamento iperbarico. Minerva Anestesiol 57: 301–307PubMedGoogle Scholar
  23. 23.
    Oriani G, Meazza D, Sacchi C, Ronzio A (1990) La sicurezza del monitoraggio e delle apparecchiature nella camera iperbarica. Minerva Anestestiol 56: 623–629Google Scholar
  24. 24.
    De Salvo R, Mazzola T (1990) Prevenzione degli incendi in camera iperbarica. Minerva Anestesiol 56: 591–599PubMedGoogle Scholar
  25. 25.
    Blanch PB, Desautels DA, Gallagher TJ (1991) Deviations in function of mechanical ventilators during hyperbaric compression. Respir Care 36 (8): 803–814Google Scholar
  26. 26.
    Pelaia P, Rocco M, Conti G, Alampi D, Cottini F, Gasparetto A (1993) How do mechanical ventilators work in the hyperbaric chamber? Acta Anaesthesiol Ital 44 (Suppl 1): 39–43Google Scholar
  27. 27.
    Camporesi EM, Richard EM (1987) Management of ciritically ill patients in the hyperbaric environment. Med Sub Hyp 6: 80–83Google Scholar
  28. 28.
    Gallagher TJ, Smith RA, Bell GC (1977) Evaluation of the IMV Bird and the modified Mark II Bird in a hyperbaric environment. Respir Care 22: 501–504PubMedGoogle Scholar
  29. 29.
    Gallagher TJ, Smith RA, Bell GC (1978) Evaluation of mechanical ventilators in a hyperbaric environment. Aviat Space Environ Med 49: 375–376PubMedGoogle Scholar
  30. 30.
    Pelaia P, Conti G, Rocco M, Volturo P, Sposato M (1989) Hyperbaric chamber clinical support: mechanical ventilators. Proc 15th Annual Meetings EUBS, Eilat (Israel), pp 178–182Google Scholar
  31. 31.
    Moon RE, Bergqvist VL, Conklin R, Miller JN (1986) Monaghan 225 ventilator use under hyperbaric conditions. Chest 89: 846–851PubMedCrossRefGoogle Scholar
  32. 32.
    Alaimo M, Solari G, Pizzola A, Guerrini A, Vezzani G (1992) Un nuovo respiratore per camera iperbarica Minerva Anestesiol 58 (Suppl): 675–676Google Scholar
  33. 33.
    Moon RE (1991) Use of ventilators in the hyperbaric environment. Acta Anaesthesiol Ital 42 (Suppl 2): 211–212Google Scholar
  34. 34.
    Weaver LK, Greenway L, Elliott CG (1988) Performance characteristics of the Sechrist 5ooA hyperbaric ventilator in a monoplace hyperbaric chamber. J Hyperb Med 3: 215–225Google Scholar
  35. 35.
    Saywood AM, Howard R, Goad RF, Scott C (1982) Function of the Oxford ventilator at high pressure. Anaesthesia 37: 740–744PubMedCrossRefGoogle Scholar
  36. 36.
    Youn BA, Houseknecht R (1991) The Penflon Oxford ventilator. J Hyperb Med 6 (4): 255Google Scholar
  37. 37.
    Spittal MJ, Hunter SJ, Jones L (1991) The Pneupac hyperbaric variant HB: a ventilator suitable for use within a one-man hyperbaric chamber. Br J Anaesth 67: 488–491PubMedCrossRefGoogle Scholar
  38. 38.
    Kindwall EP, Goldmann RW (1984) Hyperbaric medicine procedures. St Luke’s Hospital Milwaukee, Wisconsin, pp 38–40Google Scholar
  39. 39.
    Alaimo M, Vezzani G, Petrolini V, Pizzola A, Marziani L, Guerrini A (1992) Un nuovo ventilatore iperbarico. Atti del Congresso “Le possibilita’ della terapia iperbarica ” Salsomaggiore Terme 38–45Google Scholar
  40. 40.
    Lanphier EH, Camporesi EM (1982) Respiration and exercise. In: Bennet PB, Helliot DH (ed) The physiology and medicine of diving. 3rd Edn. Ballière Tindall, London, pp 99–156Google Scholar
  41. 41.
    Maclntosh R, Mushin WW, Epstein HG (1963) Physics for the anaesthetist, 3rd edn. Oxford: Blackwell Scientific, p 251Google Scholar
  42. 42.
    Youn BA, Myers RAM (1989) Volume monitor for mechanical ventilation in the hyperbaric chamber. Crit Care Med 17 (5): 453–454PubMedCrossRefGoogle Scholar
  43. 43.
    Youn BA, Myers RAM (1988) Occult PEEP in the hyperbaric chamber. Undersea Biomed Res 15 (Suppl): 41–42Google Scholar
  44. 44.
    Weaver LK (1991) Clinical applications on hyperbaric oxygen-monoplace chamber use. Probl Respir Care 4: 189–214Google Scholar
  45. 45.
    Oriani G, Rossetti M, Meazza D, Sacchi C, Ronzio A, Campagnoli P (1991) A rational approach to monitoring in a hyperbaric environment. Acta Anaesthesiol Ital 42 (Suppl 2): 157–158Google Scholar
  46. 46.
    Marroni A, Ditri L, Oriani G, Pietropaoli P (1991) Recommended criteria for the selection of the appropriate dose in hyperbaric oxygen therapy. Acta Anaesthiol Ital 42 (Suppl 2): 103–106Google Scholar
  47. 47.
    Clark JM, Lambertsen CL (1971) Alveolar-arterial 02 differences in man at 0.2, 1.0, 2.0 and 3.5 ATA inspired PO2. J Appl Physiol 30: 753–763PubMedGoogle Scholar
  48. 48.
    Weaver LK, Howe S, Berlin SL (1990) Normobaric measurement of 02 tension of blood and saline tonomered under hyperbaric 02 conditions. J Hyperb Med 5: 29–37Google Scholar
  49. 49.
    Weaver LK, Howe S (1991) Arterial Oxygen tension of patients with abnormal pulmonary function during hyperbaric oxygen therapy. Undersea Biomed Res 18 (Suppl): 107–108Google Scholar
  50. 50.
    Weaver LK, Howe S (1992) Normobaric measurement of arterial oxygen tension in subjects exposed to hyperbaric oxygen. Chest 102: 1175–1181PubMedCrossRefGoogle Scholar
  51. 51.
    Hamilton RW (1970) Safe Instrumentation for physiological research in the hyperbaric environment. Trans NY. Acad Sci 32: 458–470Google Scholar
  52. 52.
    Sutton T, Freese M, Saur S, Swaby G, Fife CE, Berry J (1994) Testing of a portable blood gas analyzer under hyper/hypobaric conditions. Undersea Hyperb Med 21 (Suppl): 50Google Scholar
  53. Venkatesh B, Clutton Brock TH, Hendry SP (1994) A multiparameter sensor for continuous intra-arterial blood gas monitoring: a prospective evaluation. Crit Care Med 22: 588–594PubMedCrossRefGoogle Scholar
  54. 54.
    Moon RE, Camporesi EM, Shelton DL (1987) Prediction of arterial PO2 during hyperberic treatment. In: Bove A, Bacharach AJ, Greenbaum LJ (eds) Proc Ninth International Symposium on Underwater and Hyperbaric Physiology. Undersea and Hyperbaic Medical Society, Bethesda, pp 1125–1131Google Scholar
  55. • Pelaia P, Rocco M, Conti G, De Blasi RA, Bufi M, Antonelli M, Bortone C (1992) Hemodynamic modifications during hyperbaric oxygen therapy. J Hyperb Med 7 (4) 229–237Google Scholar
  56. 56.
    Wattel F, Mathieu D, Neviere R (1991) Invasive vs non-invasive haemodynamic monitoring. Acta Anaesthesiol Ital 42 (Suppl 2): 164–166Google Scholar
  57. 57.
    Mathieu D, Neviere R, Wattel F (1991) Haemodynamic monitoring during hyperbaric oxygen therapy: technical and safety aspects. Acta Anaesthesiol Ital 42 (Suppl 2): 209–210Google Scholar
  58. 58.
    Bergo JW, Risberg J, Tyssebotn I (1989) Effect of 5 bar oxygen on cardiac output and organ blood flow in conscious rats. Undersea Biomed Res 15: 457–470Google Scholar
  59. 59.
    Risberg J, Tissebotn I (1986) Hyperbaric exposure to a 5 ATA He-N2–02 atmosphere effects the cardiac functions and organ blood flow distribution in awake trained rats. Undersea Biomed Res 13: 77–90PubMedGoogle Scholar
  60. 60.
    Sventek JC, Ambraski EJ (1985) Effects of too % oxygen on the cardiovascular responses to vasoactive compounds in the dogs. Aviat Space Environ Med 56: 972PubMedGoogle Scholar
  61. 61.
    Hordnes C, Tyssebotn I (1985) Effects of high ambient pressure and oxygen tension on organ blood flow in conscious trained rats. Undersea Biomed Res 12 (2): 115–128PubMedGoogle Scholar
  62. 62.
    Pisarello JB, Clark JM, Lambertsen CJ, Gelfand R (1987) Human circulatory responses to prolonged hyperbaric hyperoxia in predictive studies V. In: Bove AA, Bachrach AJ, Greenbaum LJ Jr (eds) Underwater and hyperbaric physiology. Proc Ninth International Symposium on Underwater and Hyperbaric Physiology. Undersea and Hyperbaric Medical Society, Bethesda pp 763–772Google Scholar
  63. 63.
    Dooley JW, Mehm WJ (1989) Non-invasive assesment of the vasoconstrictive effects of hyperoxygenation. J Hyperb Med 4: 177–187Google Scholar
  64. 64.
    Neviere R, Mathieu D, Wattel F (1990) Modifications Hémodimamiques en milieu hyperbare. Arch Int Physiol Bioch; tome V 426–430Google Scholar
  65. 65.
    Savitt MA, Rankin JS, Elberry JR, Owen CH, Camporesi EM (1994) Influence of hyperbaric oxygen on left ventricular contractility, total coronary blood flow and myocardial oxygen consumption in the conscious dog. Undersea Hyperb Med 21 (2): 169–183PubMedGoogle Scholar
  66. 66.
    Chagnon JL, Mathieu D, Neviere R, Wattel F (1994) Augmentation de l’oxygenation tissulaire en exygenotherapie hyperbare. Proceedings ist European Consensus Conference on Hyperbaric Medicine. Lille 364–374Google Scholar
  67. 67.
    Bernstein DP (1986) A new stroke volume equation for thoriacic electrical bioimpedance: theory and rationae. Crit Care Med 14: 902–904CrossRefGoogle Scholar
  68. 68.
    Bernstein DP (1987) Continuous noninvasive real time monitoring of stroke volume and cardiac output by thoracic bioimpedance. Crit Care Med 14: 898–901CrossRefGoogle Scholar
  69. 69.
    Torbati D (1987) Oxygen and brain functions: a review. Proc Ninth International Symposium on Underwater and Hyperbaric Physiology. Bove AA, Bachrach AJ, Grenbaum LJ (eds) Undersea Medical Society, Bethesda pp 659–661Google Scholar
  70. 70.
    Ducassé JL (1991) HBO equipment for neurological diagnosis. Acta Anaesthesial Ital 42 (Suppl 2): 155–156Google Scholar
  71. 71.
    Brauzzi M, Martorano P, Spigarelli C, Adrario E, Corsi D, Giovannini C, Pietropaoli P (1992) Monitoraggio dell’attivita’ elettrica cerebrale in camera iperbarica. Acta Anaesthesiol Ital 43: 452–456Google Scholar
  72. 72.
    Moon RE, Camporesi EM, Kisslo JA (1987) Use of evoked potentials during acute dysbaric sickness. In: Halsey MJ, Elliott DH (eds) Diagnostic Techniques in diving neurology. London: Medical Research Council, pp 63–69Google Scholar
  73. 73.
    Mitchell P, Erwin CW, Camporesi EM, Moon RE, Goad R, Mebane Y, Stolp B, Bennett PB (1987) Latency and amplitude of somatosensory evoked potentials in normal subjects breathing air and oxygen at 1 and 2.8 ATA. Proc Ninth International Symposium on Underwater and Hyperbaric Physiology. Bove AA, Bachrach AJ, Grenbaum LJ (eds) Undersea Medical Society, Bethesda, pp 1025–1030Google Scholar
  74. 74.
    Overlock R, Dutka A, Farm F, Okamoto G, Suzuki D (1989) Somatosensory evoked potentials measured in divers with a history of spinal cord decompression sickness. Undersea Bioed Res 16 (Suppl): 89Google Scholar
  75. 75.
    Cianfrone G, Turchetta R, Pelaia P (1985) Effetti dell’iperossia in iperbarismo sull’ABR nell’uomo. Audiol Ital 2 (3): 290–301Google Scholar
  76. 76.
    Bennet PB, Ackles KN, Cripps VJ (1969) Effects of hyperbaric N2 and 02 on auditory evoked responses in man. Aerospace Med 40: 521–525Google Scholar
  77. 77.
    Oriani G (1992) Il monitoraggio critico in ambito iperbarico: analysi dei problemi. Minerva Anestesiol 58: 803–807PubMedGoogle Scholar
  78. 78.
    Ohta H, Hadeishi H, Nemoto M, Kawamura S, Hinuma Y, Suzuki E (1990) Transient effect of hyperbaric oxygen on cerebral blood flow and intracranial pressure. J Hyperb Med 5 (1): 3–13Google Scholar
  79. 79.
    Sukoff MH, Ragatz RE (1982) Hyperbaric oxygenation for the treatment of acute cerebral edema. Neurosurgery io: 29–38Google Scholar
  80. 80.
    Lundberg N (196o) Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psyhiatr Neurol Scand 36 (Suppl 149):1–193Google Scholar
  81. 81.
    Mayhall CG, Archer NH, Lamb VA (1984) Ventriculostomy-related infections. A prospective epidemiologic study. N Engl J Med 310: 553–559Google Scholar
  82. 82.
    Aucoin PJ, Kotilainen HR, Gantz NM (1986) Intracranial pressure monitors: epidemiologic study of risk factors and infections. Am J Med 80: 369–376PubMedCrossRefGoogle Scholar
  83. 83.
    Powell M, Crockard A (1986) Difficulties in interpretation of extradural pressure measurements in actuely raised intracranial pressure. In: Miller JD, Teasdale GM, Rowan NO, Galbraith SL, Mendelow AD (eds) Intracranial pressure. Springer, Berlin Heidelberg New York, pp 203–207Google Scholar
  84. 84.
    Pelaia P, Rocco M, Spadetta G, Di Marco PA, Tritapepe L (1991) Monitoring of acute cerebral vascular pathologies. Acta Anaesthesiol Ital 42 (Suppl 2): 162–163Google Scholar
  85. 85.
    Shenkin HA, Harmel MH, Kety SS (1948) Dynamic anatomy of the cerebral circulation. Arch eurol Psychiatry 33: 733–738Google Scholar
  86. 86.
    Robertson CS, Narayan RK, Gokaslan ZI et al. (1989) Cerebral arteriovenous oxygen difference as an estimate of cerebral blood flow in comatose patients. J Neurosurg 70: 222–230PubMedCrossRefGoogle Scholar
  87. 87.
    Sokoloff L (1971) Neurophysiology and neurochemistry of coma. Exp Biol Med 4: 15PubMedGoogle Scholar
  88. 88.
    Sheinberg M, Kanter MJ, Robertson CS et al. (1992) Continuous monitoring of jugular venous oxygen saturation in head-injured patients. J Neurosurg 76: 212–217PubMedCrossRefGoogle Scholar
  89. 89.
    Gismondi A, Caione R, Scardia M, De Razza L (1991) SvO2 monitoring in hyperbarism: a preliminary study. Acta Anaesthesiol Ital 42 (Suppl 2): 157–158Google Scholar
  90. 90.
    Buck J,Alexander J (1987) Safety and accurcacy of volumetric infusion pumps in hyperbaric chamber. J Hyperb Med 2: 2–9Google Scholar
  91. 91.
    Martindale LG, Milligan M, Fries P (1987) Test of an R-Z Defibrillator adapter in a hyperbaric chamber. J Hyperb Med 2: 14–25Google Scholar
  92. 92.
    Wattel F, Mathieu D, Neviere R (1991) Oxygen transport and utilisation under hyperbaric conditions and monitoring criteria. Acta Anaesthesiol Ital 42 (Suppl 2): 107–110Google Scholar
  93. 93.
    Sheffield PJ (1988) Tissue oxygen measurements. In: Davis JC, Hunt TK (eds) Problem wounds. The role of oxygen. Elsevier, New York; pp 17–51Google Scholar
  94. 94.
    Campagnoli P, Oriani G, Sala G, Meazza D, Sacchi C, Ronzio A, Montino O, Michel M (1992) Prognostic value of TcPO2 during hyperbaric oxygen therapy. J Hyperb Med; 7 (4): 223–228Google Scholar
  95. 95.
    Wattel F, Mathieu D, Neviere R (1991) Transcutaneous oxygen pressure measurements. J Hyperb Med 6 (4) 269–282Google Scholar
  96. 96.
    Raafferty TD, Morrero 0 (1983) Skinfold thickness, body mass and obesity indexes and the arterial to skin-surface PO2 gradient. Arch Surg 110 (10): 1142–1146Google Scholar
  97. 97.
    Hauser CJ, Shoemaker WC (1983) Use of transcutaneous PO2 regional perfusion index to quantify tissue perfusion in peripheral vascular diesease. Ann Surg 197 (3): 337–343PubMedCrossRefGoogle Scholar
  98. 98.
    Wattel F, Mathieu D, Neviere R (1992) The hyperbaic oxygen therapy for the critically ill patient. Atti del Congresso IV Giornate Internazionali di Rianimazione, Roma, pp 63–74Google Scholar
  99. 99.
    Weaver LK (1988) A functional suction apparatus within the monoplace hyperbaric chamber. J Hyperb Med 3: 35–44Google Scholar

Copyright information

© Springer-Verlag Italia, Milano 1996

Authors and Affiliations

  • P. Pelaia
    • 1
  • M. Rocco
    • 2
  • E. Di Lauro
    • 3
  • G. Spadetta
    • 3
  1. 1.Institute of Anaesthesia and Intensive CareUniversity of TriesteTriesteItaly
  2. 2.Institute of Anaesthesia and Intensive CareUniversity “La Sapienza” of RomeRomeItaly
  3. 3.Department of Anaesthesia and Intensive CareI. R. C. S. “Casa Sollievo della Sofferenza”S. Giovanni Rotondo, FoggiaItaly

Personalised recommendations