Effect of Hyperbaric Oxygen on Activity of Antibacterial Agents

  • L. Marzella
  • G. Vezzani


The interactions between oxygen and antimicrobial agents have important implications for the therapy of infections, because oxygen tensions can profoundly affect the static and cidal activity of certain antimicrobial agents against specific microorganisms.


Antimicrobial Agent Oxygen Tension Antibacterial Agent Antimicrob Agent Hyperbaric Oxygen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bryan LE, Kwan S (1981) Mechanisms of aminoglycoside resistance of anaerobic bacteria and facultative bacteria grown anaerobically. J Antimicrob Chemother 8 (Suppl D): 1–8PubMedGoogle Scholar
  2. 2.
    Hays RC, Mandel G (1974) Redox potential of experimental abscesses. Proc Soc Exp Biol Med 147: 29–30PubMedGoogle Scholar
  3. 3.
    Vaudaux P (1981) Peripheral inactivation of gentamicin. J Antimicrob Chemother 8 (Suppl A): 17–25PubMedGoogle Scholar
  4. 4.
    Raval G, Park MK, Myers RAM, Marzella L (1992) Hyperoxia modulates aminoglycoside activity in Gram-negative bacteria. Undersea Biomed Res 19: 26Google Scholar
  5. 5.
    Bigger JW (1944) The bacterial action of penicillin on Staphylococcus pyogenes. Ir J Med Sci 227 533–568Google Scholar
  6. 6.
    Craig WA, Gudmundsson S (1986) The postantibiotic effect. In: V Lorian (ed) Antibiotics in laboratory medicine, 2nd edn. Williams and Wilkins, Baltimore, pp 515–536Google Scholar
  7. 7.
    Tack KJ, Sabath LD (1985) Increased minimum inhibitory concentrations with anaerobiosis for tobramycin, gentamicin, and amikacin, compared to latamoxef, piperacillin, chloramphenicol, and clindamycin. Chemotherapy 31: 204–210PubMedCrossRefGoogle Scholar
  8. 8.
    Reynolds AV, Hamilton-Miller JMT, Brumfitt W (1976) Diminished effect of gentamicin under anaerobic or hypercapnic conditions. Lancet 1: 447–449PubMedCrossRefGoogle Scholar
  9. 9.
    Mader JT, Brown GL Guckian JC, Wells CH, Reinarz JA (1980) A mechanism for the amelioration by hyperbaric oxygen of experimental staphylococcal osteomyelitis in rabbits. J Infect Dis 142: 915–922PubMedCrossRefGoogle Scholar
  10. 10.
    Park MK, Muhvich KH, Myers RAM, Marzella L (1991) Hyperoxia prolongs the aminoglycoside-induced postantibiotic effect in Pseudomonas aeruginosa. Antimicrob Agents Chemother 35: 691–695PubMedGoogle Scholar
  11. 11.
    Baquero F, Culebras E, Patron C, Perez-Diaz, JC, Medrano JC, Vicente MF (1986) Postanti-biotic effect of imipenem on gram-positive and gram-negative micro-organisms. J Antimicrob Chemother 18 (Suppl E): 47–59PubMedGoogle Scholar
  12. 12.
    Eagle H (1949) The recovery of bacteria from the toxic effects of penicillin. J Clin Invest 28: 832–836CrossRefGoogle Scholar
  13. 13.
    Rolison GN (1973) Plasma concentrations of penicillin in relation to the antibacterial effect. In: Davies DS, Prichard BNC (eds) Biological effect of drugs in relation to their plasma concentration. University Park Press, Baltimore, pp 183–189Google Scholar
  14. 14.
    Christman MF, Morgan RW, Jacobson FS, Ames BN (1985) Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41: 753–762PubMedCrossRefGoogle Scholar
  15. 15.
    Storz G, Tartaglia LA, Ames BN (1990) Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science 248 (1952): 189–194PubMedCrossRefGoogle Scholar
  16. 16.
    Park MK, Myers RAM, Marzella L (1993) Hyperoxia and prolongation of aminoglycosideinduced postantibiotic effect in Pseudomonas aeruginosa: role of reactive oxygen species. Antimicrob Agents Chemother 37: 120–122PubMedGoogle Scholar
  17. 17.
    Verklin RM, Mandell GL (1977) Alteration of effectiveness of antibiotics by anaerobiosis. J Lab Clin Med 89: 65–71PubMedGoogle Scholar
  18. 18.
    Harrel LJ, Evans JB (1977) Effect of anerobiosis on antimicrobial susceptibility of staphylococci. Antimicrob Agents Chemother 11: 1077–1078Google Scholar
  19. 19.
    Norden CW, Shaffer M (1983) Treatment of experimental chronic osteomyelitis due to Staphylococcus aureus with vancomycin and rifampin. J Infect Dis 147: 352–357PubMedCrossRefGoogle Scholar
  20. 20.
    Gilman A, Raoo T, Nies AS, Taylor P (eds) (1990) Goodman and Gilman’s pharmacological basis of therapeutics. Pergamon Press, New YorkGoogle Scholar
  21. 21.
    Smith JT, Lewin CS (1988) Chemistry and mechanisms of action of the quinolone antibacterials. In: Andriole VT (ed) The quinolones. Academic Press, New York, pp 23–82Google Scholar
  22. 22.
    Lesse AI, Freer C (1987) Oral ciprofloxacin therapy for Gram negative bacillary osteomyelitis. Am J Med 82 (Suppl IV): 247–253PubMedGoogle Scholar
  23. 23.
    Bayer AS, O’Brien T, Norman DC, Nast CC (1989) Oxygen-dependent differences in exopolysaccharide production and aminoglycoside inhibitory-bacterial interactions with Pseudomonas aeruginosa–implications for endocarditis. J Antimicrob Chemother 23: 21–35PubMedCrossRefGoogle Scholar
  24. 24.
    Gottlieb SF, Solosky JA, Aubrey R, Nedelkoff DD (1974) Synergistic action of increased oxygen tensions and PABA-folic acid antagonists on bacterial growth. Aerospace Med 45: 829–833PubMedGoogle Scholar
  25. 25.
    Virtanen S (1974) Antibacterial activity of sulphamethoxazole and trimethoprim under diminished oxygen tension. J Gen Microbiol 84: 145–148PubMedGoogle Scholar
  26. 26.
    Pakman LM (1971) Inhibition of Pseudomonas aeruginosa by hyperbaric oxygen. I. Sulfonamide activity enhancement and reversal. Infect Immunol 4: 479–487Google Scholar
  27. 27.
    Pesanti EL (1984) Pneumocystis carinii: oxygen uptake, antioxidant enzymes and susceptibility to oxygen-mediated damage. Infect Immunol 44: 7–11Google Scholar
  28. 28.
    Kono Y (1982) Oxygen enhancement of bactericidal activity of rifamycin SV on Escherichia coli and aerobic oxidation of rifamicin SV to rifamicyn S catalyzed by manganous ions: the role of superoxide. J Biochem 91: 381–395PubMedGoogle Scholar
  29. 29.
    Muhvich KH, Park MK, Myers RAM, Marzella L (1989) Hyperoxia and the antimicrobial susceptibility of Escherichia coli and Pseudomonas aeruginosa. Antimicrob Agents Chemother 33: 1526–1530PubMedGoogle Scholar
  30. 30.
    O’Brien RW, Morris JG (1972) Effect of metronidazole on hydrogen production by Clostridium acetobutylicum. Arch Microbiol 84: 225–233CrossRefGoogle Scholar
  31. 31.
    Tally FP, Sullivan CE (1981) Metronidazole: in vitro activity, pharmacology and efficacy in anaerobic bacterial infections. Pharmacotherapy 1: 28–38PubMedGoogle Scholar
  32. 32.
    Park MK, Myers RAM, Marzella L (1992) Oxygen tensions and infections: modulation of microbial growth, activity of antimicrobial agents and immunologic responses. Clin Infect Dis 14: 720–740PubMedCrossRefGoogle Scholar
  33. 33.
    Muhvich KH, Myers RAM, Marzella L (1988) Effect of hyperbaric oxygenation, combined with antimicrobial agents and surgery, in a rat model of intraabdominal infection. J Infect Dis 157: 1058–1061PubMedCrossRefGoogle Scholar
  34. 34.
    Vezzani G (In Review) Piperacillin, metilmicin, ciprofloxacin and hyperbaric oxygen in the treatment of experimental peritonitis in rats.Google Scholar
  35. 35.
    Wichtermann KA, Baue AE (1980) Sepsis and septic shock–a review of laboratory models and a proposal. J Surg Res 29: 189–201CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1996

Authors and Affiliations

  • L. Marzella
    • 1
  • G. Vezzani
    • 2
  1. 1.Department of Pathology, School of MedicineUniversity of MarylandBaltimoreUSA
  2. 2.Anaesthesia and Reanimation ServiceOspedale Civile di FidenzaFidenzaItaly

Personalised recommendations