Cerebral Perfusion Imaging with Gadolinium Chelates and Iron Oxides in Humans

  • P. Reimer
  • G. Schuierer
  • A. Tigges
  • C. Fischer
  • P. E. Peters
Conference paper
Part of the Syllabus book series (SYLLABUS)


Susceptibility-induced signal loss following the bolus injection of paramagnetic contrast agents coupled with dynamic magnetic resonance imaging (MRI) has enabled the generation of cerebral blood volume (CBV) maps which reflect cerebral perfusion [1-4]. Both gadolinium-and dysprosium-based paramagnetic contrast agents and endogenous substances have been used for CBV and functional MRI (fMRI) studies [1-6]. More recently, superparamagnetic iron oxides (SPIO) with a stronger susceptibility effect than paramagnetic chelates have been applied in humans as well [7, 8]. We describe clinical results with the current approved dose of gadolinium chelates (0.1 mmol/kg body weight), present results with a neutral gadolinium chelate at higher doses (0.1-0.5 mmol/kg bodyweight), and take a look into the future with the first clinical results of a novel bolus-injectable SPIO contrast agent (Resovist, SH U 555A, Schering AG, Berlin) to induce susceptibility contrast in the brain [9].


Cerebral Blood Volume Functional Magnetic Resonance Imaging Superparamagnetic Iron Oxide Gadopentetate Dimeglumine Gadolinium Chelate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Frahm J, Haase A, Matthaei D (1986) Rapid NMR imaging of dynamic processes using the FLASH technique. Magn Reson Med 3: 321–327PubMedCrossRefGoogle Scholar
  2. 2.
    Fisel CR, Ackerman JL, Buxton RB, et al (1991) MR contrast due to microscopically heterogeous magnetic susceptibility: Numerical simulations and applications to cerebral physiology. Magn Reson Med 17: 336–347Google Scholar
  3. 3.
    Villringer A, Rosen BR, Belliveau JW, et al (1988) Dynamic imaging with lanthanide chelates in normal brain: Contrast due to magnetic susceptibility effects. Magn Reson Med 6: 164–174Google Scholar
  4. 4.
    Rosen BR, Belliveau JW, Aronen HJ, et al (1991) Susceptibility contrast imaging of cerebral blood volume: Human experience. Magn Reson Med 22: 293–299Google Scholar
  5. 5.
    Aronen HJ, Gazit IE, Louis DN, et al (1994) Cerebral blood volume maps of gliomas: Comparison with tumor grade and histologic findings. Radiology 191: 41–51Google Scholar
  6. 6.
    Belliveau JW, Kennedy DN, McKinstry RC, et al (1991) Functional mapping of the human visual cortex using magnetic resonance imaging. Science 254: 716–719PubMedCrossRefGoogle Scholar
  7. 7.
    Bulte JWM, De Jonge MWA, Kamman RL, et al (1992) Dextran-magnetite particles: Contrast-enhanced MRI of blood-brain barrier disruption in a rat model. Magn Reson Med 23: 215–223Google Scholar
  8. 8.
    Kent TA, Quast MJ, Kaplan BJ, Lifsey RS, Eisenberg HM (1990) Assessment of a superparamagnetic iron oxide (AMI-25) as a brain contrast agent. Magn Reson Med 13: 434–443PubMedCrossRefGoogle Scholar
  9. 9.
    Reimer P, Schuierer G, Balzer T, Peters PE (1995) Application of a superparamagnetic iron oxide (Resovist) for MR imaging of human cerebral blood volume. Magn Reson Med (in press)Google Scholar
  10. 10.
    Axel L (1980) Cerebral blood flow determination by rapid-sequence computed tomography: a theoretical analysis. Radiology 137: 679–686PubMedGoogle Scholar
  11. 11.
    Rosen BR, Belliveau JW, Chien D (1989) Perfusion imaging by nuclear magnetic resonance. Magn Reson Q 5: 263–281PubMedGoogle Scholar
  12. 12.
    Hamm B, Staks T, Taupitz M (1994) A new superparamagnetic iron oxide contrast agent for magnetic resonance imaging. Invest Radiology 29: S87 - S89CrossRefGoogle Scholar
  13. 13.
    Schuierer G, Tigges A, Reimer P, Daldrup H, Peters PE (1995) The repeatability of MR-perfusion studies: a clinical study. Twelth Annual Meeting and Exhibition of the Society of Magnetic Resonance and European Society for Magnetic Resonance in Medicine and Biology, Nice, p. 84Google Scholar
  14. 14.
    Edelman RR, Mattle HP, Atkinson DJ, et al (1990) Cerebral blood flow: Assessment with dynamic contrast-enhanced T2*-weighted MR imaging at 1.5 T. Radiology 176: 211PubMedGoogle Scholar
  15. 15.
    Reimer P, Rummeny EJ, Daldrup HE, et al (1995) Clinical results with Resovist: A phase 2 clinical trial. Radiology 195: 489–496PubMedGoogle Scholar
  16. 16.
    Majumdar S, Zoghbi S, Gore JC (1988) Regional differences in rat brain displayed by fast MRI with superparamagnetic contrast agents. Magn Reson Med 6: 611–615Google Scholar
  17. 17.
    White DL, Aicher KP, Tzika AA, Kucharzyk J, Engelstad BL, Moseley ME (1992) Iron-dextran as a magnetic susceptibility contrast agent: Flow-related contrast effects in the T2-weighted spin-echo MRI of normal rat and cat brain. Magn Reson Med 24: 14–28PubMedCrossRefGoogle Scholar
  18. 18.
    Prichard JW, Rosen BR (1994) Functional Study of the Brain by NMR. Cereb Blood Flow Metab 14: 365–372CrossRefGoogle Scholar
  19. 19.
    Frahm J, Merboldt KD, Hänicke W (1993) Functional MRI of human brain activation at high spatial resolution. Magn Reson Med 29: 139–144PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1996

Authors and Affiliations

  • P. Reimer
    • 1
  • G. Schuierer
    • 1
  • A. Tigges
    • 1
  • C. Fischer
    • 1
  • P. E. Peters
    • 1
  1. 1.Institute of Clinical RadiologyWestfalian Wilhelms-UniversityMuensterGermany

Personalised recommendations