Functional MRI pp 146-154 | Cite as

Stunned Myocardium: Functional and Perfusion MR Imaging

  • D. H. Szolar
  • M. Saeed
  • M. Wendland
  • H. Sakuma
  • M. A. Stiskal
  • T. P. L. Roberts
  • C. B. Higgins
Conference paper
Part of the Syllabus book series (SYLLABUS)


Stunned myocardium refers to a fully reversible postischemic mechanical dysfunction that persists after reperfusion despite the absence of irreversible damage [1, 2]. Currently, diagnostic modalities applied to identify reversibly injured myocardium prospectively are based on assessment of regional myocardial function [3], myocardial perfusion [4], metabolism [5], and cell membrane integrity [6]. However, among these techniques used to image reperfused injured myocardium, none have the potential for combined evaluation of abnormal regional perfusion and function. Magnetic resonance (MR) imaging has the capability to simultaneous evaluate regional perfusion and contractile function [7, 8].


Leave Anterior Descend Coronary Occlusion Stun Myocardium Systolic Wall Gradient Recall Echo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF (1975) Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 56: 978–985PubMedCrossRefGoogle Scholar
  2. 2.
    Braunwald E, Kloner RA (1982) The stunned myocardium: Prolonged, postischemic ventricular dysfunction. Circulation 66: 1146–1149Google Scholar
  3. 3.
    Nixon JV, Brown CN, Smitherman TC (1982) Identification of transient and persistent segmental wall motion abnormalities in patients with unstable angina by two-dimensional echocardiography. Circulation 65: 1497–1503PubMedCrossRefGoogle Scholar
  4. 4.
    Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL (1991) Identification of viable myocardium in patients with coronary artery disease and left ventricular dysfunction: Comparison of thallium scintigraphy with reinjection and PET imaging with 18F-fluorodeoxyglucose. Circulation 83: 26–37PubMedGoogle Scholar
  5. 5.
    Perrone-Filardi P, Bacharach SL, Dilsizian V, Maurea S, Marin-Neto JA, Arrighi JA, Frank JA, Bonow RO (1992) Metabolic evidence of viable myocardium in regions with reduced wall thickness and absent wall thickening in patients with chronic left ventricular dysfunction. J Am Coll Cardiol 20: 161–168PubMedCrossRefGoogle Scholar
  6. 6.
    Gould KI, Yoshida K, Hess MJ, Haynie M, Mullani N, Smalling RW (1991) Myocardial metabolism of fluorodeoxyglucose compared to cell membrane integrity for the potassium analogue rubidium-82 for assessing infarct size in man by PET. J Nucl Med 32: 1–9PubMedGoogle Scholar
  7. 7.
    Hartnell G, Cerel A, Kamalesh M, Finn JP, Hill T, Cohen M, Tello R, Lewis S (1994) Detection of myocardial ischemia: value of combined myocardial perfusion and cineangiographic MR imaging. AJR 163: 1061–1067PubMedGoogle Scholar
  8. 8.
    Yeon SB, Reichek N, Tallant BA, et al (1991) Imaging function and perfusion defects in myocardial infarction using magnetic resonance tagging and iron oxide contrast [Ab-stract]. In: Proc Soc Magn Reson, San Francisco, CA, p 371Google Scholar
  9. 9.
    Sinusas AJ, Shi QX, Vitols PJ, Fetterman RC, Maniawski P, Zaret BL, Wackers FJTh (1993) Impact of regional ventricular function, geometry, and dobutamine stress on quantitative ssmTc-sestamibi defect size. Circulation 38: 2224–2234Google Scholar
  10. 10.
    Pettigrew RI, Marin S, Eisner R, Leyendecker M, Schmarkey S, Patterson R (1991) Detection of partial coronary artery stenosis with isoprotenerol stress cine-MRI in dogs: validation by on-line ultrasonic crystals and flow probes [Abstract]. In: Book of Abstracts, Proc Soc Magn Reson, New York, p. 243Google Scholar
  11. 11.
    Kramer CM, Lima JAC, Reichek N, Ferrari VA, Llaneras MR, Palmon LC, Yeh I, Tallant B, Axel L (1993) Regional differences in function within noninfarcted myocardium during left ventricular remodeling. Circulation 88: 1279–1288PubMedGoogle Scholar
  12. 12.
    Kerber RE, Marcus ML, Ehrhardt J, Wilson R, Abboud FM (1975) Correlation between echocardiographically demonstrated segmental dyskinesis and regional myocardial function. Circulation 52: 1097Google Scholar
  13. 13.
    Heyndrickx GR, Wijns W, Vogelaers D, Degrieck J, Bol A, Vandeplassche G, Melin JA (1993) Recovery of regional contractile function and oxidative metabolism in stunned myocardium induced by 1-hour circumflex coronary artery stenosis in chronically instrumented dogs. Circulation Research 72: 901–913PubMedGoogle Scholar
  14. 14.
    Balaban RS, Taylor JF, Turner R (1994) Effect of cardiac flow on gradient recalled echo images of the canine heart. NMR Biomed 7: 89–95PubMedCrossRefGoogle Scholar
  15. 15.
    Iwamoto T, Bai X-J, Downey HF (1994) Coronary reperfusion related changes in myocardial contractile force and systolic ventricular stiffness. Cardiovasc Res 28: 1331–1336PubMedCrossRefGoogle Scholar
  16. 16.
    Ito BR, Tate H, Kobayashi M, Schaper W (1987) Reversibly injured, postischemic canine myocardium retains normal contractile reserve. Circulation 61: 834–846Google Scholar
  17. 17.
    Warltier DC, Gross GJ, Brooks HL, Preuss KC (1988) Im provement of postischemic contractile function by the calcium channel blocking agent nitrendipine in conscious dogs. J Cardiovasc Pharmacol 12 (Suppl 4): S120 - S124PubMedCrossRefGoogle Scholar
  18. 18.
    Ambrosio G, Weisman HF, Mannisi JA, Becker LC (1989) Progressive impairment of regional myocardial perfusion after initial restoration of postischemic blood flow. Circulation 80: 1846–1861PubMedCrossRefGoogle Scholar
  19. 19.
    Bolli R, Zhu WX, Thornby JI, O’Neill PG, Roberts R (1988) Time course and determinants of recovery of function after reversible ischemia in conscious dogs. Heart Circ. Physiol 23: H102 - H114Google Scholar
  20. 20.
    Canty JM, Judd RM, Brady AS, Klocke FJ (1991) First pass entry of nonionic contrast agent into the myocardial extravascular space: effect on radiographic estimates of transit time and blood volume. Circulation, 84: 2071–2078PubMedGoogle Scholar
  21. 21.
    Hoffmann EA, Rumberger J, Dougherty L, Reichek N, Axel L (1989) A geometric view of cardiac `efficiency’ [Abstract]. J Am Coll Cardiol 13: 86AGoogle Scholar
  22. 22.
    Axel L, Dougherty L (1989) Heart wall motion: Improved method of spatial modulation of magnetization for MR imaging. Radiology 172: 349–350Google Scholar
  23. 23.
    Karwatowski SP, Mohiaddin RH, Yang GZ, Firmin DN, Sutton MSJ, Underwood RS, Longmore DB (1994) Assessment of regional left ventricular long-axis motion with MR velocity mapping in healthy subjects. J Magn Reson Imaging 4: 151–155PubMedCrossRefGoogle Scholar
  24. 24.
    Van Rugge FP, Van der Wall EE, Spanjersberg SJ, De Roos A, Matheijssen NAA, Zwinderman AH, Dijkman PRM, Reiber JHC, Bruschke AVG (1994) Magnetic resonance imaging during dobutamine stress for detection and localization of coronary artery disease. Quantitative wall motion analysis using a modification of the centerline method. Circulation 90: 127–138Google Scholar
  25. 25.
    Edelman RR, Li W (1994) Contrast enhanced echo-planar MR imaging of myocardial perfusion: preliminary study in humans. Radiology 190: 771–777PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 1996

Authors and Affiliations

  • D. H. Szolar
    • 1
  • M. Saeed
    • 2
  • M. Wendland
    • 2
  • H. Sakuma
    • 2
  • M. A. Stiskal
    • 2
  • T. P. L. Roberts
    • 2
  • C. B. Higgins
    • 2
  1. 1.Department of RadiologyUniversity Hospital and Karl-Franzens Medical School GrazGrazAustria
  2. 2.Department of RadiologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations