Advertisement

Functional MRI pp 105-110 | Cite as

PRESTO, a Rapid 3D Approach for Functional MRI of Human Brain

  • C. T. W. Moonen
  • P. van Gelderen
  • N. Ramsey
  • G. Liu
  • J. H. Duyn
  • J. Frank
  • D. R. Weinberger
Part of the Syllabus book series (SYLLABUS)

Abstract

Ogawa et al. [1, 2] proposed in 1990 that physiological information related to neuronal activity can be incorporated in functional magnetic resonance imaging (fMRI) based on changes in the concentration of deoxyhemoglobin in blood (blood oxygenation level dependent, or BOLD effect). As compared to positron emission tomography (PET) and single photon emission computed tomography (SPECT), BOLD fMRI offers substantial advantages: minimal discomfort, no exposure to ionizing radiation and excellent spatial and temporal resolution. Several studies have now demonstrated that sensory and language functions can be mapped with fMRI.

Keywords

Single Photon Emission Compute Tomography Echo Planar Imaging Gradient Echo Bold fMRI Bold Signal Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ogawa S, Lee TM, Nayak AS, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance imaging of rodent brain at high magnetic fields. Magn Reson Med 14: 68PubMedCrossRefGoogle Scholar
  2. 2.
    Ogawa S, Lee TM, Ray AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87: 9868PubMedCrossRefGoogle Scholar
  3. 3.
    Boxerman JR, Hamberg LM, Rosen BR, Weiskoff RM (1995) MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34: 555PubMedCrossRefGoogle Scholar
  4. 4.
    Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weiskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng H, Brady TJ, Rosen BR (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89: 5675PubMedCrossRefGoogle Scholar
  5. 5.
    Ogawa S, Tank DW, Menon R, Ellerman JM, Kim S, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping using MRI. Proc Natl Acad Sci USA 89: 5951–5955PubMedCrossRefGoogle Scholar
  6. 6.
    Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JH (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25: 390PubMedCrossRefGoogle Scholar
  7. 7.
    Frahm J, Bruhn H, Merboldt K, Hänicke W (1992) Dynam ic MR imaging of human brain oxygenation during rest and photic stimulation. J Magn Reson Imaging 2: 501PubMedCrossRefGoogle Scholar
  8. 8.
    Kim SG, Ashe J, Hendrich K, Ellermann JM, Merkle H, Ugurbil K, Georgopoulos AP (1993) Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 261: 615PubMedCrossRefGoogle Scholar
  9. 9.
    Schneider W, Noll DC, Cohen JD (1993) Functional topographic mapping of the cortical ribbon in human vision with conventional MRI scanners. Nature 365: 150PubMedCrossRefGoogle Scholar
  10. 10.
    Duyn JH, Moonen CTW, de Boer RW, van Yperen GH, Luyten PR (1994) Inflow versus deoxyhemoglobin effects in “BOLD” functional MRI using gradient echoes at 1.5 T. NRM Biomed 7: 83Google Scholar
  11. 11.
    Lai S, Hopkins A, Haacke EM, Li D, Wasserman B, Buckley P, Friedman L, Meltzer H, Hedera H, Friedland R (1993) Identification of vascular structures as a major source of signal contrast in high resolution 2D and 3D functional activation imaging of the motor cortex at 1.5 T: Preliminary results. Magn Res Med 30: 387Google Scholar
  12. 12.
    Moonen CTW, Liu G, van Gelderen, Sobering G (1992) A fast gradient-recalled MRI technique with increased sensitivity to dynamic susceptibility effects. Mag Reson Med 26: 184CrossRefGoogle Scholar
  13. 13.
    Liu G, Sobering G, Olson AW, Van Gelderen P, Moonen CTW (1993) Fast Echo-Shifted Gradient-Recalled MRI: Combining a short repetition time with variable T2* weighting. Magn Reson Med 30: 68PubMedCrossRefGoogle Scholar
  14. 14.
    Liu G, Sobering G, Duyn J, Moonen CTW (1993) A functional MRI technique combining principles of Echo-Shifting with a train of observations ( PRESTO ). Magn Reson Med 30: 764Google Scholar
  15. 15.
    Moonen CTW, Barrios F, Zigun JR, Gillen J, Liu G, Sobering G, Sexton R, Woo J, Frank J, Weinberger D (1994) Functional Brain MR Imaging based on bolus tracking with a fast T2* sensitized Gradient-Echo Method. J Magn Reson Imaging 12: 379CrossRefGoogle Scholar
  16. 16.
    Duyn J, Moonen CTW, Mattay VS, Sexton RH, Barrios FA, Sobering GS, Frank FA, Liu G, Weinberger DR (1994) 3Dimensional functional imaging of human brain using echo-shifted FLASH. Magn Reson Med 32: 150Google Scholar
  17. 17.
    Van Gelderen P, Ramsey NF, Liu G, Duyn JH, Frank JA, Weinberger DR, Moonen CTW (1995) Three dimensional functional MRI of human brain on a clinical 1.5 T scanner. Proc Natl Acad Sci USA 92: 6906PubMedCrossRefGoogle Scholar
  18. 18.
    Van Gelderen P, Duyn JH, Liu G, Moonen CTW (1994) Optimal T2* weighting for BOLD-type functional MRI of human brain. Indian Academy of Sciences, Chem Sci 106: 1617Google Scholar
  19. 19.
    Ramsey NF, Kirkby BS, Van Gelderen P, Berman KF, Duyn JH, Frank JA, Mattay VS, Van Horn JD, Esposito G, Moonen CTW, Weinberger DR (1994) Functional mapping of human sensorimotor cortex with 3D BOLD fMRI correlates highly with H2150 PET rCBF. J Cereb Blood Flow Metab (in press)Google Scholar
  20. 20.
    Ramsey NF, Mattay VS, Van Gelderen P, Frank JA, Moonen CTW, Weinberger DR (1995) Test-retest reliability of 3D fMRI with PRESTO. Hum Brain Mapping (in press)Google Scholar

Copyright information

© Springer-Verlag Italia, Milano 1996

Authors and Affiliations

  • C. T. W. Moonen
    • 1
  • P. van Gelderen
    • 1
  • N. Ramsey
    • 2
  • G. Liu
    • 1
  • J. H. Duyn
    • 3
  • J. Frank
    • 3
  • D. R. Weinberger
    • 2
  1. 1.NIH In Vivo NMR Research CenterBEIP, NCRR, Building 10, Room B1D-125BethesdaUSA
  2. 2.Clinical Brain Disorders BranchNIMH, NIH, 2700 Martin Luther King Jr. Avenue, S.EWashingtonUSA
  3. 3.Laboratory of Diagnostic Radiology Research ProgramOIR, NIH, BethesdaMarylandUSA

Personalised recommendations