Advertisement

Functional Magnetic Resonance Imaging with Echo Planar Imaging

  • K. K. Kwong
Part of the Syllabus book series (SYLLABUS)

Abstract

Functional magnetic resonance imaging (fMRI), a class of techniques that images intrinsic blood signal change with magnetic resonance (MR) imagers, has in the past 3 years become one of the most successful tools used to study cerebral blood flow and perfusion in the brain. Because changes in neuronal activity are accompanied by focal changes in cerebral blood flow (CBF), blood volume (CBV), blood oxygenation, and metabolism, these physiological changes can be used to produce functional maps of mental operations.

Keywords

Echo Planar Imaging Magnetic Resonance Signal Human Visual Cortex Visual Cortex Activation Echo Planar Imaging Inversion Recovery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Le Bihan D, Breton D, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168: 497–505PubMedGoogle Scholar
  2. 2.
    Kwong KK, McKinstry RC, Chien D, Crawley AP, Pearlman JD, Rosen BR (1991) CSF-suppressed quantitative singleshot diffusion imaging. Magn Reson Med 21: 157–63PubMedCrossRefGoogle Scholar
  3. 3.
    Neil JJ, Ackerman JJH (1992) Detection of pseudodiffusion in rat brain following blood substitution with perfluorocarbon. J Magn Reson 97: 194–20Google Scholar
  4. 4.
    Neil JJ, Booch CS, Ackerman JJH (1994) An evaluaition of the sensitivity of the intravoxel incoherent motion ( IVIM) method of blood flow measurement to changes in cerebral blood flow. Magn Reson Med 32: 60–5Google Scholar
  5. 5.
    Henkelman RM, Neil JJ, Xiang Q-S (1994) A quantitative interpretation of IVIM measurements of vascular perfusion in the rat brain. Magn Reson Med 32: 464–9PubMedCrossRefGoogle Scholar
  6. 6.
    Detre J, Leigh J, Williams D, Koretsky A (1992) Perfusion imaging. Magn Reson Med 23: 37–45PubMedCrossRefGoogle Scholar
  7. 7.
    Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci USA 89: 212PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang W, Williams DS, Detre JA, Koretsky AP (1992) Measurement of brain perfusion by volume-localized NMR spectroscopy using inversion of arterial spins: accounting for transit time and cross relaxation. Magn Reson Med 25: 362–71PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang W, Williams DS, Koretsky AP (1991) Measurement of rat brain perfusion by NMR using spin labeling of arterial water: in vivo determination of the degree of spin labeling. Magn Reson Med 29: 416–21CrossRefGoogle Scholar
  10. 10.
    Dixon WT, Du LN, Faul D, Grado M, Rosnick S (1986) Projection angiograms of blood labelled by adiabatic fast passage. Magn Reson Med 3: 454–62PubMedCrossRefGoogle Scholar
  11. 11.
    Kwong KK, Belliveau JW, Chesler DA, et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89: 5675–9PubMedCrossRefGoogle Scholar
  12. 12.
    Turner R, Le Bihan D, Moonen CT, Despres D, Frank J (1991) Echo-planar time course MRI of cat brain oxygenation changes. Magn Reson Med 22: 159–66PubMedCrossRefGoogle Scholar
  13. 13.
    Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87: 9868–72PubMedCrossRefGoogle Scholar
  14. 14.
    Ogawa S, Lee TM (1990) Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurements and image simulation. Magn Reson Med 16: 9–18PubMedCrossRefGoogle Scholar
  15. 15.
    Mansfield P. Multi-planar image formation using NMR spin echoes (1977) J Physics C10: L55–8Google Scholar
  16. 16.
    Brady TJ (1991) Future prospects for MR imaging. In: Tenth Annual Meeting of the Society of Magnetic Resonance in Medicine. San Francisco, 2Google Scholar
  17. 17.
    Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25: 390–7PubMedCrossRefGoogle Scholar
  18. 18.
    Belliveau JW, Kennedy Jr DN, McKinstry RC, et al (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254: 716–9PubMedCrossRefGoogle Scholar
  19. 19.
    Ogawa S, Tank DW, Menon R, et al (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89: 5951–5PubMedCrossRefGoogle Scholar
  20. 20.
    Frahm J, Bruhn H, Merboldt K, Hanicke W (1992) Dynamic MR imaging of human brain oxygenation during rest and photic stimulation. J Magn Reson Imaging 2: 501–5PubMedCrossRefGoogle Scholar
  21. 21.
    Ogawa S, Lee TM, Nayak AS, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14: 6878CrossRefGoogle Scholar
  22. 22.
    Turner R, Jezzard P, Wen H, Kwong K, Le Bihan D, Balaban R (1992) Functional mapping of the human visual cortex at 4 Tesla using oxygen contrast EPI. In: Eleventh Annual Meeting of the Society of Magnetic Resonance in Medicine. Berlin, 304Google Scholar
  23. 23.
    Blamire A, Ogawa S, Ugurbil K, et al (1992) Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging. Proc Natl Acad Sci USA 89: 11069–73PubMedCrossRefGoogle Scholar
  24. 24.
    Menon R, Ogawa S, Tank D, Ugurbil K (1993) 4-Tesla gradient recalled echo characteristics of photic stimulation-in-Google Scholar
  25. duced signal changes in the human primary visual cortex. Magn Reson Med 30: 380–6Google Scholar
  26. 25.
    Lai S, Hopkins AL, Haacke EM, et al (1993) Identification of vascular structures as a major source of signal contrast in high resolution 2D and 3D functional activation imaging of the cortex at 1.5T: preliminary results. Magn Reson Med 30: 387–92PubMedCrossRefGoogle Scholar
  27. 26.
    Cao Y, Towle VL, Levin DN, Grzeszczuk R, Mullan JF (1993) Conventional 1.5 T functional MRI localization of human hand sensorimotor cortex with intraoperative electrophysiologic validation. In: Twelfth Annual Meeting of th Society of Magnetic Resonance in Medicine. New York, 1417Google Scholar
  28. 27.
    Connelly A, Jackson GD, Frackowiak RSJ, Belliveau JW, Vargha-Khadem F, Gadian DG (1993) Functional mapping of activated human primary cortex with a clinical MR imaging system. Radiology 188: 125–30PubMedGoogle Scholar
  29. 28.
    Kim S-G, Ashe J, Hendrick K, et al. (1993) Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 261: 615–7PubMedCrossRefGoogle Scholar
  30. 29.
    Schneider W, Noll DC, Cohen JD (1993) Functional topographic mapping of the cortical ribbon in human vision with conventional MRI scanners. Nature 365: 150–3PubMedCrossRefGoogle Scholar
  31. 30.
    Kim SG, Ashe J, Georgopouplos AP, et al. (1993) Functional imaging of human motor cortex at high magnetic field. J Neurophysiol 69: 297PubMedGoogle Scholar
  32. 31.
    Hinke RM, Hu X, Stillman AE, et al. (1993) Magnetic resonance functional imaging of Broc’s area during internal speech. Neuroreport 4: 675–8PubMedCrossRefGoogle Scholar
  33. 32.
    Binder JR, Rao SM, Hammeke TA, et al. (1993) Functional magnetic resonance imaging ( FMRI) of auditory semantic processing. Neurology (suppl) 2: 189Google Scholar
  34. 33.
    Rao SM, Binder JR, Bandettini PA, et al. (1993) Functional magnetic resonance imaging of complex human movements. Neurology 43: 2311–8PubMedGoogle Scholar
  35. 34.
    McCarthy G, Blamire AM, Rothman DL, Gruetter R, Shulman RG (1993) Echo-planar MRI studies of frontal cortex activation during work generation in humans. Proc Natl Acad Sci USA 90: 4952–6PubMedCrossRefGoogle Scholar
  36. 35.
    Gomiscek G, Beisteiner R, Hittmair K, Mueller E, Moser E (1993) A possible role of in-flow effects in functional MR-imaging. Mag Reson Materials in Phy, Bio, Med. 1: 109–13Google Scholar
  37. 36.
    Duyn J, Moonen C, de Boer R, van Yperen G, Luyten P (1993) Inflow versus deoxyhemoglobin effects in “BOLD’ functional MRI using gradient echoes at 1.5 T. In: Twelfth Annual Meeting of the Socety of Magnetic Resonance in Medicine. New York, 168Google Scholar
  38. 37.
    Hajanl JV, Collins AG, White SJ, et al. (1993) Imaging of human brain activity at 0.15 T using fluid attenuated inversion recovery ( FLAIR) pulse sequences. Magn Reson Med 30: 650–3Google Scholar
  39. 38.
    Hajnal JV, Myers R, Oatridge A, Schwieso JE, Young IR, Bydder GM (1994) Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn Reson Med 31: 283–91PubMedCrossRefGoogle Scholar
  40. 39.
    Henning J, Ernst T, Speck O, Deuschl G, Feiffel E (1994) Detection of brain activation using oxygenation sensitive functional spectroscopy. Magn Reson Med 31: 85–90CrossRefGoogle Scholar
  41. 40.
    Ellermann JM, Flament D, Kim S-G, Fu Q-G, Merkle TJ, Ugubril K (1994) Spatial patterns of functional activation of the cerebellum investigated using high field (4T) MRI. NMR Biomed 7: 63–8CrossRefGoogle Scholar
  42. 41.
    Schad LR, Trost U, Knopp MV, Muller E, Lorenz WJ (1994) Motor cortex stimulation measured by magnetic resonance imaging on a standard 1.5 T clinical scanner. Magn Reson Imaging 11: 461–4CrossRefGoogle Scholar
  43. 42.
    Breiter HC, Kwong KK, Baker JR, et al. (1993) Functional magnetic resonance imaging of symptom provocation in patients with obsessive-compulsive disorder versus control. In: Twelfth Annual Meeting of the Society of Magnetic Resonance in Medicine. New York, 58Google Scholar
  44. 43.
    Constable RT, Kennan RP, Puce A, McCarthy G, Gore JC (1994) Functional NMR imaging using fast spin echo at 1.5 T. Magn Res Med 31: 686–90CrossRefGoogle Scholar
  45. 44.
    Binder JR, Rao SM, Hammeke TA, et al. (1994) Functional magnetic resonance imaging of human auditory cortex. Ann Neurol 35: 662–72PubMedCrossRefGoogle Scholar
  46. 45.
    Engel SA, Rumelhart DE, Wandell BA, et al. (1994) fMRI of human visual cortex. Nature 369: 525Google Scholar
  47. 46.
    Ernst T, Hennig J (1994) Observation of a fast response in functional MR. Magn Reson Med 32: 146–9PubMedCrossRefGoogle Scholar
  48. 47.
    Edelman RR, Siewert B, Darby DG, et al. (1994). Qualitative mapping of cerebral blood flow and functional localization with echo-plan MR imaging and signal targeting with alternating radio frequency. Radiology 192: 513–20PubMedGoogle Scholar
  49. 48.
    Warach S, Sievert B, Darby D, Thangaraj V, Edelman R (1994) EPISTAR perfusion echo-planar imaging of human brain tumors. JMRI 4: S8Google Scholar
  50. 49.
    Warach S, Darby DG, Thangaraj V, Nobre AC, Sanes JA, Edelman RR (1994) Applications of EPISTAR for mapping functional changes in relative cerebral blood flow. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 72Google Scholar
  51. 50.
    Bandettini PA, Wong EC, Jesmanowicz A, et al. (1994) MRI of human brain activation at 0.5 T, 1.5 T and 3.0 T: comparisons of AR2* and functional contrast to noise ratio. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 434Google Scholar
  52. 51.
    Cohen MS, Weisskoff RM (1991) Ultra-fast imaging. Magn Reson Imaging 9: 1–37PubMedCrossRefGoogle Scholar
  53. 52.
    Wong EC, Boskamp E, Hyde JS (1992) A volume optimized quadrature elliptical endcap birdcage brain coil. In: Eleventh Annual Meeting of the Society of Magnetic Resonance in Medicine. Berlin, 4015Google Scholar
  54. 53.
    Wong EC, Bandettini PA, Hyde JS (1992) Echo-planar imaging of the human brain using a three axis local gradient coil. In: Eleventh Annual Meeting of the Society of Magnetic Resonance in Medicine. Berlin, 105Google Scholar
  55. 54.
    Turner R, Jezzard P, Wen H, et al. (1993) Functional mapping of the human visual cortex at 4 and 1.5 Tesla using de-oxygenation contrast EPI. Magn Reson Med 29: 277–9PubMedCrossRefGoogle Scholar
  56. 55.
    Frahm J, Merboldt K, Hänicke W (1993) Functional MRI of human brain activation at high resolution. Magn Reson Med 29: 139–44PubMedCrossRefGoogle Scholar
  57. 56.
    Thulborn KR, Waterton JC, Matthews PM, Radda GK (1982) Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta 714: 265–70PubMedCrossRefGoogle Scholar
  58. 57.
    Grubb RL, Raichle ME, Eichling JO, Ter-Pogossian MM (1974) The effects of changes in Paco2 on cerebral blood volume, blood flow and vascular mean transit time. Stroke 5: 630–9PubMedCrossRefGoogle Scholar
  59. 58.
    Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 83: 1140–4PubMedCrossRefGoogle Scholar
  60. 59.
    Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241: 462–4PubMedCrossRefGoogle Scholar
  61. 60.
    Prichard J, Rothman D, Novotny E, et al. (1991) Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci USA 88: 582931Google Scholar
  62. 61.
    Brooks RA, Di Chiro G (1987) Magnetic resonance imaging of stationary blood: a review. Med Phys 14: 903–13PubMedCrossRefGoogle Scholar
  63. 62.
    Vilringer A, Planck J, Hock C, Schleinkofer L, Dirnagl U (1993) Near infrared spctroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci Lett 134: 101–4CrossRefGoogle Scholar
  64. 63.
    Obrig H, Kleinschmidt A, Merboldt KD, Dirnagl U, Grahm J, Villringer A (1994) Monitoring of cerebral blood oxygenation during human brain activation by simultaneous high-resolution MRI and near-infrared spectroscopy. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 67Google Scholar
  65. 64.
    Nakajima T, Fujita M, Watanabe H, et al (1994) Functional mapping of the human visual system with near-infrared spectroscopy and BOLD functional MRI. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 687Google Scholar
  66. 65.
    Turner R, Grinvald A (1994) Direct visualization of patterns of deoxygenation and reoxygenation in monkey cortical vasculature during functional brain activation. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 430Google Scholar
  67. 66.
    Jezzard P, Heineman F, Taylor J, et al (1994) Comparison of EPI gradient-echo contrast changes in cat brain caused by respiratory challenges with direct simultaneous evaluation of cerebral oxygenation via a crania window. NMR Biomed 7: 35–44PubMedCrossRefGoogle Scholar
  68. 67.
    Edelman R, Sievert B, Wielopolski P, Pearlman J, Warach S (1994) Noninvasive mapping of cerebral perfusion by using EPISTAR MR angiography. In: First Meeting of the Society of Magnetic Resonance. Dallas, 68Google Scholar
  69. 68.
    Kwong KK, Chesler DA, Zuo CS, et al. (1993) Spin echo (T2, Ti) studies for functional MRI. In: Twelfth Annual Meeting of the Society of Magnetic Resonance in Medicine. New York, 172Google Scholar
  70. 69.
    Kwong KK, Chesler DA, Weisskoff RM, Rosen BR (1994) Perfusion MR imaging. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 1005Google Scholar
  71. 70.
    Williams DS, Detre JD, Zhang W, Silva AC, Koretsky AP (1994) A survey of labeling strategies for perfusion imaging by arterial spin labeling. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 1004Google Scholar
  72. 71.
    Weisskoff RM, Baker JR, Belliveau JW, Davis TL, Kwong KK, Cohen MS, Rosen BR (1993) Power spectrum analysis of functionally weighted MR data: what’s in the noise? In: Eleventh Annual Meeting of the Society of Magnetic Resonance in Medicine. New YorkGoogle Scholar
  73. 72.
    Weisskoff RM, Hoppel BE, Rosen BR (1992) Signal changes in dynamic contrast studies: theory and experiment in vivo. in: Tenth Meeting of th Society for Magnetic Resonance Imaging. Chicago, 44Google Scholar
  74. 73.
    Zuo C, Boxerman J, Weisskoff R (1992) Compartment size determines T2 relaxivity in susceptibility contrast agents: theory and experiment. In: Eleventh Annual Meeting of the Society of Magnetic Resonance in Medicine. Berlin, 866Google Scholar
  75. 74.
    McKenize CA, Drost DJ, Carr TJ (1997) The effect of magnetic field strength on signal change AS/S in function MRI with BOLD contrast. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 433Google Scholar
  76. 75.
    Jezzard P, LeBihan D, Cuenod C, Pannier L, Prinster A, Turner R (1993) An investigation of the contribution of physiological noise in human functional MRI studies at 1.5 Tesla and 4 Tesla. In: Twelfth Annual Meeting of the Society of Magnetic Resonance in Medicine. New York, 1392Google Scholar
  77. 76.
    Hu X, Kim S-G (1994) Reduction of signal fluctuation in functional MRI using navigator echo. Magn Reson Med 31: 495–503PubMedCrossRefGoogle Scholar
  78. 77.
    Noll D, Schneider W (1994) Respiration artifacts in functional brain imaging: sources of signal variation and compensation strategies. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 647Google Scholar
  79. 78.
    Jezzard P, Goldstein SR (1994) A head position monitoring device for use in functional MRI studies. In: Second Conference of the Society of Magnetic Resonance. San Francisco, 648Google Scholar
  80. 79.
    Woods R, Mazziotta J, Cherry S (1992) Automated algorithm for aligning tomographic images. II. Cross-modality MRI-PET registration. J Comput Assist Tomogr 16: 620–33Google Scholar
  81. 80.
    Tyszka JM, Grafton ST, Chew W, et al (1994) Parceling of mesial frontal motor areas during ideation and movement using functional magnetic resonance imaging at 1.5 Tesla. Ann Neurol 35: 662–72CrossRefGoogle Scholar
  82. 81.
    Jiang A, Kennedy D, Woods R, et al (1994) Motion detection and correction in functional MRI. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 351Google Scholar
  83. 82.
    Risinger R, Hertz-Pannier L, Schmidt M, Maisog JM, Cuenod CA, Le Bihan C (1994) Evaluation of image registration in functional brain MRI. In: Second Meeting of the Society of Magnetic Resonance, San Francisco, 649Google Scholar
  84. 83.
    Fisel CR, Ackerman JL, Buxton RB, et al (1991) MR contrast due to microscopically heterogeneous magnetic susceptibility: numerical simulations and applications to cerebral physiology. Magn Reson Med 17: 336–47PubMedCrossRefGoogle Scholar
  85. 84.
    Ogawa S. Menon R, Tank D, et al. (1993) Functional brain mapping by blood oxygenation level dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64: 803–12Google Scholar
  86. 85.
    Weisskoff RM, Boxerman JL, Zuo CS, Rosen BR (1993) Endogenous susceptibility contrast: principles of relationship between blood oxygenation and MR signal change. In: Functional MRI of the brain. Society of Magnetic Resonance in Medicine. Arlington, VA, 103Google Scholar
  87. 86.
    Weisskoff RM, Zuo CS, Boxerman JL, Rosen BR (1994) Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med 31: 601–10PubMedCrossRefGoogle Scholar
  88. 87.
    Frahm J, Merboldt K, Hanicke W (1993) Tissue vs. vascular effects and changes of flow vs. deoxyhemoglobin? Problems revealed by functional brain imaging at high spatial resolution. In: Twelfth Annual Meeting of the Society of Magnetic Resonance in Medicine. New York, 1427Google Scholar
  89. 88.
    Duyn JH, Moonen CTW, Van Yperen GH, De Boer RW, Luyten PR (1994) Inflow versus deoxyhemoglobin effects in BOLD functional MRI using gradient echoes at 1.5 T. NMR Biomed 7: 83–9PubMedCrossRefGoogle Scholar
  90. 89.
    Frahm J, Merboldt K-D, Hanicke W, Kleinschmidt A, Boecker H (1994) Brain or vein oxygenation or flow? On signal physiology in functional MRI of human brain activation. NMR Biomed 7Google Scholar
  91. 90.
    Kim S-G, Hendrich K, Hu X, Merkle H, Ugurbil K (1994) Potential pitfalls of functional MRI using conventional gradient-recalled echo techniques. NMR Biomed 7: 69–74PubMedCrossRefGoogle Scholar
  92. 91.
    DeYoe EA, Neitz J, Miller D, Wieser J (1993) Functional magnetic resonance imaging (FMRI) of visual cortex in human subjects using a unique video graphics stimulator. In: Twelfth Annual Meeting of the Society of Magnetic Resonance in Medicine. New York, 1394Google Scholar
  93. 92.
    Lee AT, Meyer CH, Glover GH (1994) Discrimination of large veins in time-course functional neuroimaging with spiral K-space trajectories. In: First Meeting of the Society of Magnetic Resonance ( JMRI ). Dallas, 59Google Scholar
  94. 93.
    Baker JR, Hopel BE, Stern CE, Kwong KK, Weisskoff RM, Rosen BR (1993) Dynamic functional imaging of the complete human cortex using gradient-echo and asymmetric spin-echo echo-planar magnetic resonance imaging. In: Twelfth Annual Meeting of the Society of Magnetic Resonance in Medicine. New York, 1400Google Scholar
  95. 94.
    Poncelet B, Weisskoff R, Wedeen V, Brady T, Kantor H (1993) Time of flight quantification of coronary flow with echo planar MRI. Magn Reson Med 30: 447–57PubMedCrossRefGoogle Scholar
  96. 95.
    Kwong KK, Chesler DA, Boxerman JL, Davis TL, Weisskoff RM, Rosen BR (1994) Strategies to reduce macrovascular effects in fMRI. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 650Google Scholar
  97. 96.
    Hu X, Kim S-G (1993) A new T2* weighting technique for magnetic resonance imaging. Magn Reson Med 30: 512–7PubMedCrossRefGoogle Scholar
  98. 97.
    Song W, Bandettini P, Wong E, Hyde J (1994) The effect of diffusion weighting on task-induced functional MRI. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 643Google Scholar
  99. 98.
    Boxerman JL, Weisskoff RM, Kwong KK, Davis TL, Rosen BR (1994) The intravascular contribution to fMRI signal change: modeling and diffusion-weighted in vivo studies. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 619Google Scholar
  100. 99.
    Menon RS, Hu X, Adroamu G, Andersen P, Ogawas S, Ugurbil K (1994) Comparison of spin-echo EPI, asymmetric spinecho EPI and conventional EPI applied to functional neuroimaging: the effect of flow crushing gradients on the BOLD signal. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 622Google Scholar
  101. 100.
    Caro CG, Pedley TJ, Seed WA (1974) In: Cardovascular physiology. Medical and Technical Publishers, London, Chapter IGoogle Scholar
  102. 101.
    Bandettini P, Wong E, Jesmanowicz A, Hinks R, Hyde J (1993) Simultaneous mapping of activation-induced OR2* and OR2 in the human brain using a combined gradient-echo and spin-echo EPI pulse sequence. In: Twelfth Annual Meeting of the Society of Magnetic Resonance in Medicine. New York, 169Google Scholar
  103. 102.
    Turner R, Jezzard P, Le Bihan D, Prinster A (1993) Contrast mechanisms and vessel size effects in BOLD contrast functional neuroimaging. In: Twelfth Annual Meeting of the Society of Magnetic Resonance in Medicine. New York, 173Google Scholar
  104. 103.
    Bandettini PA, Wong EC, Jesmanowicz A, Hinks RS, Hyde JS (1994) Spin-echo and gradient echo EPI of human brain activation using BOLD contrast: a comparative study at 1.5 T. NMR Biomed 7: 12–20PubMedCrossRefGoogle Scholar
  105. 104.
    Tootell RBH, Kwong KK, Belliveau JW, et al (1993) Mapping human visual cortex: evidence from functional MRI and histology. In: Investigative opthalmology and visual science. Annual Meeting, Sarasoto, 813Google Scholar
  106. 105.
    Tootell RBH, Reppas JB, Kwong KK, et al (1994) Coding of motion and color in human cortical area MT/V5. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 690Google Scholar
  107. 106.
    Russell DP (1994) A generalized approach to time-course data analysis of functional MRI of the human brain. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 636Google Scholar
  108. 107.
    Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS (1993) Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med 30: 161–73PubMedCrossRefGoogle Scholar
  109. 108.
    Friston KJ, Jezzard P, Turner R (1994) Analysis of functional MRI time-series. Human Brain Maping 1: 153–71CrossRefGoogle Scholar
  110. 109.
    Requardt M, Kleinschmidt A, Hanicke W, Merboldt KD, Frahm J (1994) Evaluation strategies for MRI of human brain activation: individual analysis of correlational imaging and cluster detection. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 625Google Scholar
  111. 110.
    Schneider W, Casey BJ, Noll D (1993) Functional MRI mapping of individual stages of visual processing. In: Twelfth Annual Meeting of the Society of Magnetic Resonance in Medicine. New York, 56Google Scholar
  112. 111.
    Baker JR, Weisskoff RM, Stern CE, et al (1994) Statistical assessment of functional MRI signal change. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 626Google Scholar
  113. 112.
    Wu D, Lewin JS (1994) Evaluation of non-parametric statistic measures and data clustering for functional MR data analysis. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 629Google Scholar
  114. 113.
    Sychra JJ, Bandettini PA, Bhattacharya N, Lin Q (1994) Synthetic images by subspaces transforms. I: principal components images and related filters. Med Phys 21: 193–201Google Scholar
  115. 114.
    Ding X, Tkach J, Ruggieri P, Masaryk T (1994) Analysis of time-course functional MRI data with clustering method without use of reference signal. In: Second Meeting of the Society of Magntic Resonance. San Francisco, 630Google Scholar
  116. 115.
    Xiong J, Gao J-H Lancaster JL, Fox PT (1994) Statistical analysis of spatial extent in functional MRI. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 631Google Scholar
  117. 116.
    Forman SD, Cohen JD, Mintun MA, Noll DC (1994) Improved assessment of significant change in functional magnetic resonance imaging (fMRI): use of the contiguity threshold. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 632Google Scholar
  118. 117.
    Biswal B, DeYoe EA, Jesmanowicz A, Hyde JS (1994) Removal of physiological fluctuations from functional MRI signals. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 653Google Scholar
  119. 118.
    Belliveau JW, Kwong KK, Baker JR, et al. (1992) MRI mapping of human visual cortex: retinotopic organization and frequency response of Vl. In: Eleventh Annual Meeting of the Society of Magnetic Resonance in Medicine. Berlin, 310Google Scholar
  120. 119.
    DeYoe E, Neitz J, Bandettini P, Wong E, Hyde J (1992) Time course of event-related MR signal enhancement in visual and motor cortex. In: Eleventh Annual Meeting of the Society of Magnetic Resonance in Medicine. Berlin, 1824Google Scholar
  121. 120.
    Malach R, Tootell RBH, Reppas JB, et al (1994) Functional MRI reveals a candidate area V4 in human visual cortex. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 692Google Scholar
  122. 121.
    Le Bihan D, Turner R, Zeffiro T, Cuenod CA, Jezzard P, Bonnerot V (1993) Activation of human primary visual cortex during visual recall: an MRI study. Proc Natl Acad Sci USA 90: 11802–5PubMedCrossRefGoogle Scholar
  123. 122.
    Rao SM, Binder JR, Hammeke TA, et al (1993) Somatotopic mapping of the primary motor cortex with functional magnetic resonance imaging. In: Twelfth Annual Meeting of the Society of Magnetic Resonance in Medicine. New York, 1397Google Scholar
  124. 123.
    Cao Y, Towle VL, Levin DN, Balter JM (1993) Functional mapping of human motor cortical activation by conventional MRI at 1.5 T. J Magn Reson Imaging 3: 869–75PubMedCrossRefGoogle Scholar
  125. 124.
    Cao Y, Vikingstad EM, Huttenlocher PR, Towle VL, Levin DN (1994) Functional magnetic resonance studies of the reorganization of the human hand sensorimotor area after unilateral brain injury in the perinatal period. Proc Natl Acad Sci USA 91: 9612–6PubMedCrossRefGoogle Scholar
  126. 125.
    Ellermann JM, Flament D, Kim SG, et al (1993) Studies of human cerebellar function using multislice nuclear magnetic resonance imaging at high magnetic field. In: Twelfth Annual Meeting of the Society of Magnetic Resonance in Medicine. New York, 1401Google Scholar
  127. 126.
    Bates SR, Yetkin FZ, Bandettini PA, Jesmanopwicz A, Estkowski L, Haughton VM (1993) Activation of the human cerebellum demonstrated by functional magnetic resonance imaging. In: Twelve Annual Meeting of the Society of Magnetic Resonance in Medicine. New York, 1420Google Scholar
  128. 127.
    Cuenod CA, Zeffiro T, Pannier L, et al (1993) Functional imaging of the human cerebellum during finger movement with a conventional 1.5 T MRI scanner. In: Twelfth Annual Meeting of the Society of Magnetic Resonance in Medicine. New York, 1421Google Scholar
  129. 128.
    Ellermann JM, Flament D, Kim SG, et al (1994) Cerebellar activation due to error detection-correction in a fisuo-motor learning task: a functional magnetic resonance imaging study. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 331Google Scholar
  130. 129.
    Kim S-G, Ugurbil K, Strick P (1994) Activation of a cere bellar output nucleus during cognitive processing. Science 265: 949–51PubMedCrossRefGoogle Scholar
  131. 130.
    Buonocore MH, Gao L, Nordahl T, Katzberg RW (1994) Unilateral cerebral with bilateral cerebellar activation during mastication muscle tensing. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 675Google Scholar
  132. 131.
    Bucher SF, Seelos KC, Sethling M, Oertel WH, Reiser M (1994) High resolution activation mapping of basal ganglia with functional magnetic resonance imaging at 1.5 Tesla. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 332Google Scholar
  133. 132.
    Frahm J, Merboldt KD, Hankcke W, Kleinschmide A, Steinmetz H (1993) High-resolution functional MRI of focal subcortical activity in the human brain. Long-echo time FLASH of the lateral geniculate nucleus during visual stimulation. In: Twelfth Annual Meeting of the Society of Magnetic Resonance in Medicine. New York, 57Google Scholar
  134. 133.
    Buchbinder BR, Jiang JH, Cosgrove GR, et al (1994) Functional mapping of sensorimotor cortex: correlation between functional MRI, 0–15 PET, and intraoperative cortical stimulation in individual subjects. American, Society of Neuro-Radiology, 162Google Scholar
  135. 134.
    Jack CR, Thompson RM, Butts RK, et al (1994) Sensory motor cortex: correlation of presurgical mapping with functional MR imaging and invasive cortical mapping. Radiology 190: 85–92PubMedGoogle Scholar
  136. 135.
    Howard R, Alsop D, Detre J, et al (1994) Functional MRI of regional brain activity in patients with intracerebral gliomas and AVMs prior to surgical or endovascular therapy. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 701Google Scholar
  137. 136.
    Rao S, Bandettini P, Wong E, et al. (1992) Gradient-echo EPI demonstrates bilateral superior temporal gyrus activation during word presentation. In: Eleventh Annual Meeting of the Society of Magnetic Resonance in Medicine. Berlin, 1827Google Scholar
  138. 137.
    Benson RR, Kwong KK, Belliveau JW, et al (1993) Magnetic resonance imaging studies for visual word recognition: words versus false font strings. In: 23th Annual Meeting of the Society of Neuroscience, Washington, DC, 1807Google Scholar
  139. 138.
    Binder JR, Rao SM, Hammeke TA, et al (1994) A lateralized, distributed network for semantic processing demonstred with whole brain functional MRI. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 695Google Scholar
  140. 139.
    Binder JR, Rao SM, Hammeke TA, Frose JA, Bandettini PA, Hyde JS (1994) Syllable rate determines functional MRI response magnitude during a speech discrimination task. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 327Google Scholar
  141. 140.
    Benson RR, Kwong KK, Buchbinder BR, et al (1994) Noninvasive evaluation of language dominance using functional MRI. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 684Google Scholar
  142. 141.
    Hyder F. Blamire AM, Phelps EA, Rothman DL, Shulman RG (1994) Functional magnetic resonance imaging of human prefrontal cortex during a verbal fluency task. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 685Google Scholar
  143. 142.
    Turner R, Jezzard P, Prinster A, et al (1994) Cortical regions involved in processing written English and American sign language by hearing and deaf subjects: a functional MRI study at 4 Tesla. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 683Google Scholar
  144. 143.
    Hertz-Pannier L, Gaillard WD, Mott S, et al (1994) Preooperative assessment of language lateralization by FMRI in children with complex partial seizures: preliminary study. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 326Google Scholar
  145. 144.
    Wada J, Rasmussen T (1960) Intracarotid injection of sodium amytal for the lateralization of cerebral speech dominance. Experimental and clinical observations. J Neurosurg 17: 266–82Google Scholar
  146. 145.
    Blamire AM, McCarthy G, Nobre AC, et al (1993) Functional magnetic resonance imaging of human pre-frontal cortex during a spatial memory task. In: Twelfth Annual Meeting of the Society of Magnetic Resonance in Medicine. New York, 1413Google Scholar
  147. 146.
    Cohen JD, Forman SD, Casey BJ, Noll DC (1993) Spiral-scan imaging of dorsolateral prefrontal cortex during a working memory task. In: Twelfth Annual Meeting of the Society of Magnetic Resonance in Medicine. New York, 1405Google Scholar
  148. 147.
    Stern CE, Corkin S, Guimaraes AR, et al (1994) A functional MRI study of long-term-explicit memory in humans. In: 24th Annual Meeting of the Society for Neuroscience. Miami Beach, 1290Google Scholar
  149. 148.
    Ives JR, Warach S, Schmitt F, Edelman RR, Schomer DL (1993) Monitoring the patient’s EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol 87: 417–20PubMedCrossRefGoogle Scholar
  150. 149.
    Huang-Hellinger FR, Breiter HC, McCormack G, et al (1994) Simultaneous functional magnetic resonance imaging and electrophysiological recording. In: Eleventh Annual Meeting of the Society of Magnetic Resonance. San Francisco, 667Google Scholar
  151. 150.
    Stern CE, Kwong KK, Belliveau JW, Baker JR, Rosen BR (1992) MR tracking of physiological mechanisms underlying brain activity. In: Eleventh Annual Meeting of the Society of Magnetic Resonance in Medicine. Berlin, 1821Google Scholar
  152. 151.
    Davis TL, Weisskoff RM, Kwong KK, Savoy R, Rosen BR (1994) Susceptibility contrast undershoot is not matched by inflow contrast undershoot. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 435Google Scholar
  153. 152.
    Henning J, Ernst T, Speck O, Laubenberger J (1993) Functional spectroscopy: a new tool for the observation of brain activation. In: Twelfth Annual Meeting of the Society of Magnetic Resonance in Medicine. New York, 12Google Scholar
  154. 153.
    Frostig RD, Lieke EE, Tso DY, Grinvald A (1990) Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc Natl Acad Sci USA 87: 6082–6PubMedCrossRefGoogle Scholar
  155. 154.
    Menon RS, Hu X, Andersen P, Ugurbil K, Ogawa S (1994) Cerebral oxy/deoxy hemoglobin changes during neural activation: MRI timecourse correlates to optical reflectance measurements. In: Second Meeting of the Societyof Magnetic Resonance. San Francisco, 68Google Scholar
  156. 155.
    Beisteiner R, Miller E, Gomiscek G, Edward V, Moser E (1994) Ultrafast high resolution functional MRI on clinical imagers. In: Eleventh Annual Meeting of The European Society of Magnetic Resonance in Medicine and Biology. ViennaGoogle Scholar
  157. 156.
    Beisteiner R, Gomiscek G, Edward V, Teichtmeister C, Moser E (1994) High temporal and spatial resolution in functional imaging on clinical imagers: investigating blood flow changes in the millisecond range. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 661Google Scholar
  158. 157.
    Teichtmeister C, Beisteiner R, Moser E (1994) Comparison of slow and fast GE-FMRI on a clinical imager. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 662Google Scholar
  159. 158.
    Merboldt KD, Kruger G, Hanicke W, Frahm J (1994) FLASH MRI of human brain activation using a CINE technique. An approach towards high temporal and spatial resolution. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 432Google Scholar
  160. 159.
    Haacke EM, Hopkins A, Lai S, et al (1994) 2D and 3D high resolution gradient echo functional imaging of the brain: venous contributions to signal in motor cortex studies. NMR Biomed 7: 54–62Google Scholar
  161. 160.
    Belliveau JW, Baker JR, Kwong KK, et al (1993) Functional neuroimaging combining fMRI, MEG and EEG. In: Eleventh Annual Meeting of the Society of Magnetic Resonance in Medicine. New York, 6Google Scholar
  162. 161.
    Sanders JA, Lewine JD, George JS, Caprihan A, Orrison WW Correlation of fMRI with MEG. In: Twelfth Annual Meeting of the Society of Magnetic Resonance in Medicine. New York, 1418Google Scholar
  163. 162.
    Beisteiner R, Gomiscek G, Erdler M, Teichtmeister C, Moser E (1994) Comparison of magnetoencephalography with functional MR imaging on the same subjects. In: First Meeting of the Society of Magnetic Resonance ( JMRI ). Dallas, 16Google Scholar
  164. 163.
    Ono Y, Shimizu H, Nakasoto N, Kawamura T, Fujiwara S, Yoshimoto T (1994) Evaluation of functional magnetic resonance imaging in comparison to magnetoencephalography. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 668Google Scholar
  165. 164.
    Hennig J, Hennel F, Oesterle, Speck O, Janz C, Nedelec JF (1994) Fast and robust measurement of brain activation using modified RARE-sequences with variable contrast. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 660Google Scholar
  166. 165.
    Cho ZH, Ro YM, Park SH, Chung SC, Ong R (1994) NMR functional imaging using tailored RF gradient echo sequence - a true susceptibility measurement technique. In: Second Meeting of the Society of Magnetic Resonance. San Francisco, 659Google Scholar
  167. 166.
    Noll DC, Cohen JD, Meyer CH, Schneider W (1994) Spiral K-space MR imaging of cortical activation: In: First Meeting of the Society of Magnetic Resonance ( JMRI ). Dallas, 25Google Scholar
  168. 167.
    Ogawa S, Lee TM, Barrere B (1993) The sensitivity of magnetic resonance image signals of a rat brain to changes in the cerebral venous blood oxygenation. Magn Reson Med 29: 205–10PubMedCrossRefGoogle Scholar
  169. 168.
    Kennan RP, Zhong J, Gore JC (1994) Intravascular susceptibility contrast mechanisms in tissues. Magn Reson Med 31: 9–21PubMedCrossRefGoogle Scholar
  170. 169.
    Merboldt KD, Bruhn H, Hanicke W, Michaelis T, Frahm J (1992) Decrease of glucose in the human visual cortex during visual stimulation. Magn Reson Med 22: 68–78Google Scholar
  171. 170.
    Chen W, Novotny EJ, Zhu X-H Rothman DL, Shulman RG (1994) Localized 1H NMR measurement of glucose consumption in the human brain during visual stimulation. In: Twelfth Annual Meeting of the Society of Magnetic Resonance in Medicine. New York, 1528Google Scholar
  172. 171.
    Singh M (1992) Toward proton MR spectroscopic imaging of stimulated brain function. IEEE Trans Nucl Sci 39: 1161–4CrossRefGoogle Scholar
  173. 172.
    Singh M, Kim T (1993) Time-course of lactate in the human auditory cortex during stimulation. In: Twelfth Annual Meeting of the Society of Magnetic Resonance in Medicine. New York,1529Google Scholar
  174. 173.
    Watanabe H, Kuwabara T, Ohkubo M, Ito T, Sakai K, Yuasa T (1993) Prolonged lactate after photic stimulation in the visual cortex of patients of mitochondrial encephalomyopathy. In: Twelfth Annual Meeting of the Society of Magnetic Resonance in Medicine. New York, 1527Google Scholar

Copyright information

© Springer-Verlag Italia, Milano 1996

Authors and Affiliations

  • K. K. Kwong
    • 1
  1. 1.MGH-NMR Center, Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolCharlestownUSA

Personalised recommendations