Skip to main content
  • 187 Accesses

Abstract

Primary brain injury is caused by disease, injury and infection. All too frequently, the damage is irreversible and leads to death or disability with significant consequences for the patient, the family and society. It is very important, therefore, to protect the brain from secondary damage. In clinical medicine, methods for providing cerebral protection are depressingly few in number and relatively crude. Animal experiments, however, offer the promise that in the future, targeted cerebral protection will be possible. This chapter describes the pathophysiological features of cerebral damage, defines the meaning of the term protection, reviews animal models of protection and discusses cerebral protection in clinical anaesthesia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wheeler DW, Menon DK (2002) Secondary Neuronal injury mechanisms. Anaesth Intensive Care Med 3: 120–123

    Google Scholar 

  2. Wright DW, Bauer ME, Hoffman SW et al (2001) Serum progesterone levels correlate with decreased cerebral edema after traumatic brain injury in rats. J Neurotrauma 18: 901–909

    Article  PubMed  CAS  Google Scholar 

  3. Mesenge C, Margailli I, Verrecchia C et al (1998) Protective effect of melatonin in a model of traumatic brain injury in mice. J Pineal Res 25: 41–46

    Article  PubMed  CAS  Google Scholar 

  4. Sullivan PG, Thompson M, Scheff SW (2000) Continuous infusion of cyclosporin A postinjury significantly ameliorates cortical damage following traumatic brain injury. Exp Neurol 161: 631–637

    Article  PubMed  CAS  Google Scholar 

  5. Kapinya KJ, Lowl D, Futterer C et al (2002) Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent. Stroke 33: 1889–1898

    Article  PubMed  CAS  Google Scholar 

  6. Teasdale GM, Bannan PE (1997) Neuroprotection in head injury. In: Reilly P, Bullock R (eds) Head injury. Chapman and Hall, London, pp 423–438

    Google Scholar 

  7. Chesnut RM (1997) Guidelines for the management of severe head injury: what we know and what we think we know. J Trauma 42: S19–22

    Article  PubMed  CAS  Google Scholar 

  8. Gregson B, Todd NV, Crawford D et al (1999) CRASH trial is based on problematic meta-analysis. BMJ 319: 578

    Article  PubMed  CAS  Google Scholar 

  9. Muizelaar JP, Marmarou A, Young HF et al (1993) Improving the outcome of severe head injury with the oxygen radical scavenger polyethylene glycol-conjugated superoxide dismutase: a phase 2 trial. J Neurosurg 78: 375–82

    Article  PubMed  CAS  Google Scholar 

  10. Marshall LE, Marshall SB (1986) Pitfalls and advances from international tirilazad trial in moderate and severe head injury. J Neurotrauma 12: 929–932.

    Article  Google Scholar 

  11. Pickard JD, Murray GD, Illingworth R et al (1989) Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: British aneurysm nimodipine trial. BMJ 298: 636–642

    Article  PubMed  CAS  Google Scholar 

  12. Harders A, Kakarieka A, Braakman R (1996) Traumatic subarachnoid haemorrhage and its treatment with nimodipine. German tSAH study group. J Neurosurg 85: 82–89

    Article  PubMed  CAS  Google Scholar 

  13. Chesnut RM, Marshall SB, Piek Jet al (1993) Early and late systemic hypotension as a frequent and fundamental source of cerebral ischemia following severe brain injury in the Traumatic Coma Data Bank. Acta Neurochir (Wien) 59: 121–125

    CAS  Google Scholar 

  14. Walia S, Sutcliffe AJ (2002) The relationship between blood glucose, mean arterial pressure and outcome after severe head injury: an observational study. Injury 33: 339–344

    Article  PubMed  Google Scholar 

  15. Reinstrup P, Stahl N, Mellergard P et al (2000) Intracerebral microdialysis in clinical practice: baseline values to chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery 47: 701–709

    PubMed  CAS  Google Scholar 

  16. Eker C, Asgeirsson B, Grande P-O et al (1998) Improved outcome after severe head injury with a new therapy based on principles for brain volume regulation and preserved microcirculation. Crit Care Med 26: 1881–1886

    Article  PubMed  CAS  Google Scholar 

  17. Sato K, Sato K, Yashimoto T (2000) Systemic and cerebral haemodynamics during craniotomy under mild hypothermia in patients with acute subarachnoid haemorrhage. Acta Neurochir (Wien) 142: 1013–1019

    Article  CAS  Google Scholar 

  18. Marion DW, Penrod LE, Kelsey SF et al (1997) Treatment of traumatic brain injury with moderate hypothermia. N Engl J Med 336: 540–546

    Article  PubMed  CAS  Google Scholar 

  19. Clifton GL, Miller ER, Choi SC et al (2001) Lack of effect of induction of hypothermia after acute brain injury. N Engl J Med 344: 556–563

    Article  PubMed  CAS  Google Scholar 

  20. Harper CM, McNicholas T, Gowrie-Mohan S (2003) Maintaining perioperative normothermia. BMJ 326: 271–272

    Article  Google Scholar 

  21. Danielisova V, Marsala M, Chavko M et al (1990) Postischemic hypoxia improves metabolic and functional recovery of the spinal cord. Neurology 40: 1125–1129

    Article  PubMed  CAS  Google Scholar 

  22. Sutcliffe AJ (2003) Neuroanaesthesia: key points during the perioperative period. Minerva Anestesiol (in press)

    Google Scholar 

  23. Yundt KD, Grubb RL, Diringer MN et al (1997) Cerebral hemodynamic and metabolic changes caused by brain retraction after aneurysmal subarachnoid hemorrhage. Neurosurgery 40: 442–450

    PubMed  CAS  Google Scholar 

  24. Sato K, Karibe H, Yoshimoto T (1999) Advantage of intravenous anaesthesia for acute stage surgery for aneurysmal subarachnoid haemorrhage. Acta Neurochir (Wien) 141: 161–163

    Article  CAS  Google Scholar 

  25. Engelhard K, Werner C, Reeker W et al (1999) Desflurane and isoflurane improve neurological outcome after incomplete cerebral ischaemia in rats. Br J Anaesth 83: 415–421

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Italia, Milano

About this paper

Cite this paper

Sutcliffe, A.J. (2004). Cerebral protection during anaesthesia. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2189-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2189-1_4

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0235-7

  • Online ISBN: 978-88-470-2189-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics