Neurotoxicity of ketamine and nitrous oxide

  • V. Jevtovic-Todorovic
Conference paper


Since its first clinical administration in 1965 by Corssen and Domino [1], the dissociative anaesthetic ketamine, a derivative of phencyclidine (PCP), has been used in many clinical settings. Unlike other intravenous anaesthetics (e.g. barbiturates, benzodiazepines, propofol), ketamine provides significant analgesia without depressing cardiovascular and respiratory functions. Therefore it is frequently used for sedation of paediatric and critically ill patients.


NMDA Receptor Nitrous Oxide NMDA Antagonist Apoptotic Neurodegeneration Place Trial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Corssen G, Domino EF (1966) Dissociative anesthesia: further pharmacologic studies and first clinical experiences with the phencyclidine derivative CI-581. Anesth Analg 45: 29PubMedCrossRefGoogle Scholar
  2. 2.
    Gonsowski CT, Eger II EI (1994) Nitrous oxide minimum alveolar anesthetic concentration in rats is greater than previously reported. Anesth Analg 79: 710–712PubMedCrossRefGoogle Scholar
  3. 3.
    Hornbein TF, Eger EI II, Winter PM et al (1982) The minimum alveolar concentration of nitrous oxide in man. Anesth Analg 61: 553–556PubMedCrossRefGoogle Scholar
  4. 4.
    Franks NP, Lieb WR (1994) Molecular and cellular mechanism of general anesthesia. Nature 367: 607–614PubMedCrossRefGoogle Scholar
  5. 5.
    Nishikawa K, MacIver MB (2001) Agent-selective effects of volatile anesthetics on GABAA receptor-mediated synaptic inhibition in hippocampal interneurons. Anesthesiology 94: 340–347PubMedCrossRefGoogle Scholar
  6. 6.
    Lodge D, Anis NA (1982) Effects of phencyclidine on excitatory amino acid activation of spinal interneurons in the cat. Eur J Pharmacol 77: 203–204PubMedCrossRefGoogle Scholar
  7. 7.
    Jevtovic-Todorovic V, Todorovic SM, Mennerick S et al (1998) Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat Med 4: 460–463PubMedCrossRefGoogle Scholar
  8. 8.
    Mennerick S, Jevtovic-Todorovic V, Todorovic SM et al (1998) Effect of nitrous oxide on excitatory and inhibitory synaptic transmission in hippocampal cultures. J Neurosci 18: 9716–9726PubMedGoogle Scholar
  9. 9.
    Stevens WC, Kingston HGG (1992) Inhalation anesthesia. In: Barash PG et al (eds) Clinical anesthesia. Lippincott, Philadelphia, pp 439–465Google Scholar
  10. 10.
    Fragren RJ and Avram MJ (1992) Nonopioid intravenous anesthetesia. In: Barash PG et al (eds) Clinical anesthesia. Lippincott, Philadelphia, pp 385–412Google Scholar
  11. 11.
    Luby ED, Gottlieb JS, Cohen BD et al (1962) Model psychosis and schizophrenia. Am J Psychiatry 119: 61Google Scholar
  12. 12.
    Krystal JH, Karper LP, Seibyl JP et al (1993) Dose-related effects of the NMDA antagonist, ketamine, in healthy humans. Schizophr Res 9: 240–241CrossRefGoogle Scholar
  13. 13.
    Newcomer JW, Farber NB, Jevtovic-Todorovic V et al (1999) Ketamine-induced NMDA receptor hypofunction as a model of memory impairment in schizophrenia. Neuropsychopharmacology 20: 106–118PubMedCrossRefGoogle Scholar
  14. 14.
    Magbagbeola JAO, Thomas NA (1974) Effect of thiopentone on emergence reactions to ketamine anaesthesia. Can Anaesth Soc J 21: 321PubMedCrossRefGoogle Scholar
  15. 15.
    White PF, Way WL, Trevor AJ (1982) Ketamine — its pharmacology and therapeutic uses. Anesthesiology 56: 1 19Google Scholar
  16. 16.
    Bovill JG, Coppell, L. Dundee JW et al (1971) Current status of ketamine anesthesia. Lancet 1: 1285PubMedCrossRefGoogle Scholar
  17. 17.
    Dohrn CS, Lichtor JL, Coalson DW et al (1993) Related articles, links reinforcing effects of extended inhalation of nitrous oxide in humans. Drug Alcohol Depend 31: 265–280PubMedCrossRefGoogle Scholar
  18. 18.
    Gillman MA (1992) Nitrous oxide abuse in perspective. Clinical Neuropharmacol 15: 297–306CrossRefGoogle Scholar
  19. 19.
    Herrling PL (1994) D-CPPene (SDZ EAA 494), a competitive NMDA antagonist: results from animal models and first results in humans. Neuropsychopharmacology 10: (Part 1):591 SGoogle Scholar
  20. 20.
    Grotta J (1995) Why do all drugs work in animals but none in stroke patients? 2. Neuroprotective therapy. J Intern Med 237: 89PubMedCrossRefGoogle Scholar
  21. 21.
    Olney JW, Labruyere J, Price MT (1989) Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science 244: 1360PubMedCrossRefGoogle Scholar
  22. 22.
    Jevtovic-Todorovic V, Wozniak DW, Benshoff ND et al (2001) Comparative evaluation of the neurotoxic properties of ketamine and nitrous oxide. Brain Res 895: 264–267PubMedCrossRefGoogle Scholar
  23. 23.
    Jevtovic-Todorovic V, Benshoff N, Olney JW (1998) Prolonged nitrous oxide anesthesia kills neurons in the adult rat brain. J Neurosurg Anesthesiol 10: 257Google Scholar
  24. 24.
    Livingston A, Waterman AE (1977) Influence of age and sex on the duration of action of ketamine in rats. Br J Pharmacol 59: 491Google Scholar
  25. 25.
    Hong K, Trudell JR, O’Neil JR et al (1980) Metabolism of nitrous oxide by human and rat intestinal contents. Anesthesiology 52: 16–19PubMedCrossRefGoogle Scholar
  26. 26.
    Jevtovic-Todorovic V, Benshoff N, Olney JW (2000) Ketamine potentiates cerebrocortical damage induced by the common anesthetic agent nitrous oxide in adult rats. Br J Pharmacol 130: 1692–1698PubMedCrossRefGoogle Scholar
  27. 27.
    Wozniak DF, Dikranian K, Ishimaru MJ et al (1998) Disseminated corticolimbic neuronal degeneration induced in rat brain by MK-801: potential relevance to Alzheimer’s disease. Neurobiol Dis 5: 305–322PubMedCrossRefGoogle Scholar
  28. 28.
    Corso TD, Sesma MA, Tenkova TI et al (1997) Multifocal brain damage induced by phencyclidine is augmented by pilocarpine. Brain Res 752: 1–14PubMedCrossRefGoogle Scholar
  29. 29.
    Olney JW, Labruyere J, Wang G et al (1991) NMDA antagonist neurotoxicity: mechanism and protection. Science 254: 1515–1518PubMedCrossRefGoogle Scholar
  30. 30.
    Olney JW, Farber NB (1995) NMDA antagonists as neurotherapeutic drugs, psychotogens, neurotoxins, and research tools for studying schizophrenia. Neuropsychopharmacology 13: 335–345PubMedCrossRefGoogle Scholar
  31. 31.
    Jevtovic-Todorovic V, Kirby CO, Olney JW (1997) Isoflurane and propofol block neurotoxicity caused by MK-801 in the rat posterior cingulate/retrosplenial cortex. Cereb Blood Flow Metab 17: 168–174Google Scholar
  32. 32.
    Ishimaru M, Fukamauchi F, Olney JW (1995) Halothane prevents MK-801 neurotoxicity in the rat cingulate cortex. Neurosci Lett 193: 1–4PubMedCrossRefGoogle Scholar
  33. 33.
    Farber NB, Foster J, Duhan NL et al (1995) Alpha 2 adrenergic agonists prevent MK-801 neurotoxicity. Neuropsychopharmacology 12: 347–349PubMedCrossRefGoogle Scholar
  34. 34.
    Farber NB, Foster J, Duhan NL et al (1996) Olanzapine and fluperlapine mimic clozapine in preventing MK-801 neurotoxicity. Schizophr Res 21: 33–37PubMedCrossRefGoogle Scholar
  35. 35.
    Farber NB, Hanslick J, Kirby C et al (1998) Serotonergic agents that activate 5HT2A receptors prevent NMDA antagonist neurotoxicity. Neuropsychopharmacology 18: 57–62PubMedCrossRefGoogle Scholar
  36. 36.
    Farber NB, Kim SH, Dikranian K et al (2002) Receptor mechanisms and circuitry underlying NMDA antagonist neurotoxicity. Mol Psychiatry 7: 32–43PubMedCrossRefGoogle Scholar
  37. 37.
    Gonzales RA, Brown LM, Jones TW et al (1991) N-Methyl-D-aspartate mediated responses decrease with age in Fischer 344 rat brain. Neurobiol Aging 12: 219–225PubMedCrossRefGoogle Scholar
  38. 38.
    Magnusson KR, Cotman CW (1993) Age-related changes in excitatory amino acid receptors in two mouse strains. Neurobiol Aging 14: 197–206PubMedCrossRefGoogle Scholar
  39. 39.
    Wenk GL, Walker LC, Price DL et al (1991) Loss of NMDA, but not GABA-A, binding in the brains of aged rats and monkeys. Neurobiol Aging 12: 93–98PubMedCrossRefGoogle Scholar
  40. 40.
    Beals JK, Carter LB, Jevtovic-Todorovic V (2003) Neurotoxicity of nitrous oxide and ketamine is more severe in aged than in young rat brain. Ann NY Acad Sci 993: 1CrossRefGoogle Scholar
  41. 41.
    Farber NB, Wozniak DF, Price MT et al (1995) Age-specific neurotoxicity in the rat associated with NMDA receptor blockade: potential relevance to schizophrenia? Biol Psychiatry 38: 788–796PubMedCrossRefGoogle Scholar
  42. 42.
    Ikonomidou C, Bosch F, Miksa M et al (1999) Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283: 70–74PubMedCrossRefGoogle Scholar
  43. 43.
    Young C, Tenkova T, Wang H et al (2003) A single sedating dose of ketamine causes neuronal apoptosis in developing mouse brain (abstract). Soc Neurosci (in press)Google Scholar
  44. 44.
    Jevtovic-Todorovic V, Hartman RE, Izumi Y et al (2003) Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 23: 876–882PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 2004

Authors and Affiliations

  • V. Jevtovic-Todorovic

There are no affiliations available

Personalised recommendations