Pain relief by ketamine

  • S. Himmelseher
  • E. Kochs
Conference paper


Although advances in techniques for anaesthesia, surgery, and the protection of organs have resulted in reductions in age- and risk-adjusted mortality and morbidity, the incidence of perioperative pain has changed little over the past years. Given the increasing numbers of elderly people with age-related painful conditions and the improvements in the management of cancer with increased life expectancy, there is a large clinical need for successful perioperative pain treatment [1]. Because clinical efforts for pain therapy are currently being re-directed from empirical strategies to more targeted mechanistic approaches [2], ketamine has increasingly been used for treatment of acute and chronic pain in the perioperative setting [3, 4]. This development has been caused partly by enhanced knowledge of pathophysiological mechanisms that operate in pain pathways, where the importance of the activation of excitatory glutamate receptors of the N-methyl-d-aspartate (NMDA) subtype in nociceptive transmission, synaptic plasticity and pain sensitisation has been established for humans [5]. Ketamine binds non-competitively to the phencyclidine-binding site of the NMDA receptor channel [6]. When clinically used at subanaesthetic doses, the drug’s analgesic efficacy correlates well with its inhibiting action on NMDA receptor-mediated pain facilitation [7, 8]. The clinical relevance of ketamine effects on other potential pain control mechanisms is not yet apparent.


Postoperative Analgesia Pain Therapy Preemptive Analgesia Caudal Analgesia Epidural Ketamine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Raj PP (ed) (2000) Practical management of pain 3rd edn. Mosby, St LouisGoogle Scholar
  2. 2.
    Scholz J, Woolf CJ (2002) Can we conquer pain. Nat Neurosci Suppl 5: 1062–1067CrossRefGoogle Scholar
  3. 3.
    Schmid RL, Sandler AN, Katz J (1999) Use and efficacy of low-dose ketamine in the management of acute postoperative pain: a review of current techniques and outcomes. Pain 82: 111–125PubMedCrossRefGoogle Scholar
  4. 4.
    Bell R, Eccleston C, Kalso E (2003) Ketamine as an adjuvant to opioids for cancer pain (Cochrane review). Cochrane Database Syst Rev 1: CD003351PubMedGoogle Scholar
  5. 5.
    Michaelis EK (1998) Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog Neurobiol 54: 369–415PubMedCrossRefGoogle Scholar
  6. 6.
    White PF, Way WL, Trevor AJ (1982) Ketamine–its pharmacology and therapeutic uses. Anesthesiology 56: 119–136PubMedCrossRefGoogle Scholar
  7. 7.
    Øoye I, Paulsen O, Maurset A (1992) Effects of ketamine on sensory perception: evidence for a role of N-methyl-D-aspartate receptors. J Pharmacol Exp Ther 260: 1209–1213Google Scholar
  8. 8.
    Hartvig P, Valtysson J, Lindner KH et al (1995) Central nervous system effects of subdissociative doses of (S)-ketamine are related to plasma and brain concentrations measured with positron emission tomography in healthy volunteers. Clin Pharmacol Ther 58: 165–173PubMedCrossRefGoogle Scholar
  9. 9.
    Zeilhofer HU, Swandulla D, Geisslinger G et al (1992) Differential effects of ketamine enantiomers on NMDA receptor currents in cultured neurons. Eur J Pharmacol 213: 155–158PubMedCrossRefGoogle Scholar
  10. 10.
    Arendt-Nielsen L, Nielsen J, Petersen-Felix S et al (1996) Effect of racemic mixture and the (S+)-isomer of ketamine on temporal and spatial summation of pain. Br J Anaesth 77: 625–631PubMedCrossRefGoogle Scholar
  11. 11.
    White PF, Schüttler J, Shafer A et al (1985) Comparative pharmacology of the ketamine isomers. Br J Anaesth 57: 197–203PubMedCrossRefGoogle Scholar
  12. 12.
    Mathisen LC, Skjelbred P, Skoglund LA et al (1995) Effect of ketamine, an NMDA receptor inhibitor, in acute and chronic orofacial pain. Pain 61: 215–20PubMedCrossRefGoogle Scholar
  13. 13.
    Schüttler J, Zsigmond E, White PF (1997) Ketamine and its isomers. In: White PF (ed) Textbook of intravenous anesthesia. Williams & Wilkins, Baltimore, pp 171–188Google Scholar
  14. 14.
    Kharasch ED, Labroo R (1992) Metabolism of ketamine stereoisomers by human liver microsomes. Anesthesiology 77: 1201–1207PubMedCrossRefGoogle Scholar
  15. 15.
    Ihmsen H, Geisslinger G, Schüttler J (2001) Stereoselective pharmacokinetics of ketamine: R(-)-ketamine inhibits the elimination of S(+)-ketamine. Clin Pharmacol Ther 70: 431–438PubMedCrossRefGoogle Scholar
  16. 16.
    Fu ES, Miguel R, Scharf JE (1997) Preemptive ketamine decreases postoperative narcotic requirements in patients undergoing abdominal surgery. Anesth Analg 84: 1086–1090PubMedGoogle Scholar
  17. 17.
    Stubhaug A, Breivik H, Eide PK et al (1997) Mapping of punctuate hyperalgesia around a surgical incision demonstrates that ketamine is a powerful suppressor of central sensitization to pain following surgery. Acta Anaesthesiol Scand 41: 1124–1132PubMedCrossRefGoogle Scholar
  18. 18.
    Suzuki M, Tsueda K, Lansing PS et al (1999) Small-dose ketamine enhances morphine-induced analgesia after outpatient surgery. Anesth Analg 89: 98–103PubMedGoogle Scholar
  19. 19.
    Menigaux C, Fletcher D, Dupont X et al (2000) The benefit of intraoperative small-dose ketamine on postoperative pain after anterior cruciate ligament repair. Anesth Analg 90: 129–135PubMedCrossRefGoogle Scholar
  20. 20.
    Aida S, Yamakura T, Baba H et al (2000) Preemptive analgesia by intravenous low-dose ketamine and epidural morphine in gastrectomy: a randomized double-blind study. Anesthesiology 92: 1624–1630PubMedCrossRefGoogle Scholar
  21. 21.
    de Kock M, Lavand’homme P, Waterloos H (2001) Balanced analgesia in the perioperative period: is there a place for ketamine. Pain 92: 373–380PubMedCrossRefGoogle Scholar
  22. 22.
    Menigaux C, Guignard B, Fletcher D et al (2001) Intraoperative small-dose ketamine enhances analgesia after outpatient knee arthroscopy. Anesth Analg 93: 606–612PubMedCrossRefGoogle Scholar
  23. 23.
    Guignard B, Coste C, Costes H et al (2002) Supplementing desflurane-remifentanil anesthesia with small-dose ketamine reduces perioperative analgesic requirements. Anesth Analg 95: 103–108PubMedCrossRefGoogle Scholar
  24. 24.
    Mathisen LC, Aasbo V, Raeder J (1999) Lack of pre-emptive analgesic effect of (R)-ketamine in laparoscopic cholecystectomy. Acta Anaesthesiol Scand 43: 220–224PubMedCrossRefGoogle Scholar
  25. 25.
    Adam F, Libier M, Oszustowicz T et al (1999) Preoperative small-dose ketamine has no preemptive analgesic effect in patients undergoing total mastectomy. Anesth Analg 89: 444 447Google Scholar
  26. 26.
    Dahl V, Ernoe PE, Steen T et al (2000) Does ketamine have preemptive effects in women undergoing abdominal hysterectomy procedures. Anesth Analg 90: 1419–1422PubMedCrossRefGoogle Scholar
  27. 27.
    Holthusen H, Backhaus P, Boeminghaus F et al (2002) Preemptive analgesia: no relevant advantage of preoperative compared with postoperative intravenous administration of morphine, ketamine, and clonidine in patients undergoing transperitoneal tumor nephrectomy. Reg Anesth Pain Med 27: 249–253PubMedGoogle Scholar
  28. 28.
    Ilkjaer S, Nikolajsen L, Hansen TM et al (1998) Effect of i.v. ketamine in combination with epidural bupivacaine or epidural morphine on postoperative pain and wound tenderness after renal surgery. Br J Anaesth 81: 707–712PubMedCrossRefGoogle Scholar
  29. 29.
    Moinche S, Kehlet H, Dahl JB (2002) A qualitative and quantitative systematic review of preemptive analgesia for postoperative pain relief. Anesthesiology 96: 725–741CrossRefGoogle Scholar
  30. 30.
    Argiriadou H, Himmel seher S, Papagiannopoulou P et al (2003) Improvement of pain treatment after major abdominal surgery by intravenous S(+)-ketamine. Anesth Analg (in press)Google Scholar
  31. 31.
    Vinik HR, Kissin I (1998) Rapid development of tolerance to analgesia during remifentanil infusion in humans. Anesth Analg 86: 1307–1311PubMedGoogle Scholar
  32. 32.
    Luginbuhl M, Geber A, Schnider TW et al (2003) Modulation of remifentanil-induced analgesia, hyperalgesia, and tolerance by small-dose ketamine in humans. Anesth Analg 96: 726–732PubMedCrossRefGoogle Scholar
  33. 33.
    Koppert W, Sittl R, Scheuber K et al (2003) Differential modulation of remifentanil-induced analgesia and postinfusion hyperalgesia by S-ketamine and clonidine in humans. Anesthesiology 99: 152–159PubMedCrossRefGoogle Scholar
  34. 34.
    Chia YT, Liu K, Wang JJ et al (1999) Intraoperative high dose fentanyl induces postoperative fentanyl tolerance. Can J Anaesth 46: 872–877PubMedCrossRefGoogle Scholar
  35. 35.
    Guignard B, Bossard AE, Coste C et al (2000) Acute opioid tolerance: intraoperative remifentanil increases postoperative pain and morphine requirement. Anesthesiology 93: 409–417PubMedCrossRefGoogle Scholar
  36. 36.
    Mao J (1999) NMDA and opioid receptors: their interactions in antinociception, tolerance and neuroplasticity. Brain Res Rev 30: 289–304PubMedCrossRefGoogle Scholar
  37. 37.
    Guignard B, Coste C, Costes H et al (2002) Supplementing desflurane-remifentanil anesthesia with small-dose ketamine reduced perioperative opioid analgesic requirements. Anesth Analg 95: 103–108PubMedCrossRefGoogle Scholar
  38. 38.
    Jaksch W, Lang S, Reichhalter R et al (2002) Perioperative small-dose S(+)-ketamine has no incremental beneficial effects on postoperative pain when standard-practice opioid infusions are used. Anesth Analg 94: 981–986PubMedCrossRefGoogle Scholar
  39. 39.
    Javery KB, Usssery TW, Steger HG et al (1996) Comparison of morphine and morphine with ketamine for postoperative analgesia. Can J Anaesth 43: 212–215PubMedCrossRefGoogle Scholar
  40. 40.
    Adrianssens G, Vermeyen KM, Hoffmann VL et al (1999) Postoperative analgesia with i.v. patient-controlled morphine: effect of adding ketamine. Br J Anaesth 83: 393–396CrossRefGoogle Scholar
  41. 41.
    Burstal R, Danjoux G, Hayes C et al (2001) PCA ketamine and morphine after abdominal hysterectomy. Anaesth Intensive Care 29: 246–251PubMedGoogle Scholar
  42. 42.
    Reeves M, Lindholm DE, Myles PS et al (2001) Adding ketamine to morphine for patient-controlled analgesia after major abdominal surgery: a double-blinded, randomized controlled trial. Anesth Analg 93: 116–120PubMedCrossRefGoogle Scholar
  43. 43.
    Murdoch CJ, Crooks BA, Miller CD (2002) Effect of the addition of ketamine to morphine in patient-controlled analgesia. Anaesthesia 57: 484–488PubMedCrossRefGoogle Scholar
  44. 44.
    Sveticic G, Gentilini A, Eichenberger U et al (2003) Combinations of morphine with ketamine for patient-controlled analgesia: a new optimization method. Anesthesiology 98: 1195–1205PubMedCrossRefGoogle Scholar
  45. 45.
    Tverskoy M, Oren M, Vaskovich M et al (1996) Ketamine enhances local anesthetic and analgesic effect of bupivacaine by peripheral mechanism: a study in postoperative patients. Neurosci Lett 215: 5–8PubMedCrossRefGoogle Scholar
  46. 46.
    Wong CS, Lu CC, Cheng CH et al (1997) Pre-emptive analgesia with ketamine, morphine and epidural lidocaine prior to total knee replacement. Can J Anaesth 44: 31–37PubMedCrossRefGoogle Scholar
  47. 47.
    Abdel-Ghaffar ME, Abdulatif M, Al-Ghandi A et al (1998) Epidural ketamine reduces postoperative epidural PCA consumption of fentanyl/bupivacaine. Can J Anaesth 45: 103–109PubMedCrossRefGoogle Scholar
  48. 48.
    Wu CT, Yeh CC, Yu JC et al (2000) Pre-incisional epidural ketamine, morphine and bupivacaine combined with epidural and general anaesthesia provides pre-emptive analgesia for upper abdominal sugery. Acta Anaesthesiol Scand 44: 63–68PubMedCrossRefGoogle Scholar
  49. 49.
    Himmelseher S, Argiriadou H. Ziegler-Pithamitsis D et al (2001) Small-dose S(+)-ketamine reduces postoperative pain when applied with ropivacaine in epidural anesthesia for total knee arthroplasty. Anesth Analg 92: 1290–1295PubMedCrossRefGoogle Scholar
  50. Lauretti GR, Oliveira AP. Rodrigues AM et al (2001) The effect of transdermal nitroglycerin on spinal S(+)-ketamine antinociception following orthopedic surgery. J Clin Anesth 13:576–581PubMedCrossRefGoogle Scholar
  51. 51.
    Naguib M, Sharif AM, Seraj M et al (1991) Ketamine for caudal analgesia in children: comparison with caudal bupivacaine. Br J Anaesth 67: 559–564PubMedCrossRefGoogle Scholar
  52. 52.
    Chia YY, Liu K, Liu YC et al (1998) Adding ketamine in a multimodal patient-controlled epidural regimen reduces postoperative pain and analgesic consumption. Anesth Analg 86: 1245–1249PubMedGoogle Scholar
  53. 53.
    Tan PH, Kuo MC, Kao PF et al (1999) Patient-controlled epidural analgesia with morphine or morphine plus ketamine for postoperative pain relief. Eur J Anesthesiol 16: 820–825Google Scholar
  54. 54.
    Subramaniam K, Subramaniam B, Pawar DK et al (2001) Evaluation of the safety and efficacy of epidural ketamine combined with morphine for postoperative analgesia after major upper abdominal surgery. J Clin Anaesth 13: 339–344CrossRefGoogle Scholar
  55. 55.
    Wagner LE, Gingrich KJ, Kulli JC et al (2001) Ketamine blockade of voltage-gated sodium channels. Evidence for a shared receptor site with local anesthetics. Anesthesiology 95: 1406–1413PubMedCrossRefGoogle Scholar
  56. 56.
    Warncke T, Jorum E, Stubhaug A (1997) Local treatment with the N-methyl-D-aspartate receptor antagonist ketamine inhibits development of secondary hyperalgesia in man by a peripheral action. Neurosci Lett 227: 1–4PubMedCrossRefGoogle Scholar
  57. 57.
    Pedersen JL, Galle TS, Kehlet H (1998) Peripheral analgesic effects of ketamine in acute inflammatory pain. Anesthesiology 89: 58–66PubMedCrossRefGoogle Scholar
  58. 58.
    Hawksworth C, Serpell M (1998) Intrathecal anesthesia with ketamine. Reg Anesth Pain Med 23: 283–288PubMedGoogle Scholar
  59. 59.
    Pedraz JL, Lanao JM, Calvo MB et al (1987) Pharmacokinetic and clinical evaluation of ketamine administered by IV and epidural routes. Int J Clin Pharmacol Ther Tox 25: 77–80Google Scholar
  60. 60.
    Koinig H, Marhofer P, Krenn CG et al (2000) Analgesic effects of caudal and intramuscular S(+)-ketamine in children. Anesthesiology 93: 976–980PubMedCrossRefGoogle Scholar
  61. 61.
    Karpinsky N, Dunn J, Hansen L et al (1997) Subpial vacuolar myelopathy after intrathecal ketamine: report of a case. Pain 73: 103–105CrossRefGoogle Scholar
  62. 62.
    Stotz M, Oehen HP, Gerber H (1999) Histological findings after long-term infusion of intrathecal ketamine for chronic pain: a case report. J Pain Symptom Manage 18: 223–228PubMedCrossRefGoogle Scholar
  63. 63.
    Yang CY, Wong CS, Chang JY et al (1996) Intrathecal ketamine reduces morphine requirements in patients with terminal cancer pain. Can J Anaesth 43: 379–83PubMedCrossRefGoogle Scholar
  64. 64.
    Yanli Y, Eren A (1996) The effect of extradural ketamine on onset time and sensory block in extradural anaesthesia with bupivacaine. Anaesthesia 51: 84–86PubMedCrossRefGoogle Scholar
  65. 65.
    Kucuk N, Kizilkaya M, Tokdemir M (1998) Preoperative epidural ketamine does not have a postoperative opioid sparing effect. Anesth Analg 87: 103–106PubMedGoogle Scholar
  66. 66.
    Weir PS, Fee JPH (1998) Double-blind comparison of extradural block with three bupivacaineketamine mixtures in knee arthroplasty. Br J Anaesth 80: 299–301PubMedCrossRefGoogle Scholar
  67. 67.
    Subramaniam K, Subramaniam B, Pawar DK et al (2001) Preoperative epidural ketamine in combination with morphine does not have a clinically relevant intra-and postoperative opioidsparing effect. Anesth Analg 93: 1321–1326PubMedCrossRefGoogle Scholar
  68. 68.
    Lee IO, Kim WK, Kong MH et al (2002) No enhancement of sensory and motor blockade by ketamine added to ropivacaine interscalene brachial plexus blockade. Acta Anaesthesiol Scand 46: 821–826PubMedCrossRefGoogle Scholar
  69. 69.
    Yaksh TL, Hua XY, Kalcheva I et al (1999) The spinal biology in humans and animals of pain states generated by persistent afferent input. Proc Natl Acad Sci 96: 7680–7686PubMedCrossRefGoogle Scholar
  70. 70.
    Johnston P, Findlow D, Aldrige LM et al (1999) The effect of ketamine on 0.25% and 0.125% bupivacaine for caudal epidural blockade in children. Paediatr Anaesth 9: 31–34PubMedCrossRefGoogle Scholar
  71. 71.
    Marhofer P, Krenn CG, Plochl W et al (2000) S(+)-Ketamine for caudal block in paediatric anaesthesia. Br J Anaesth 84: 341–345Google Scholar
  72. 72.
    Lee HM, Sanders GM (2000) Caudal ropivacaine and ketamine for postoperative analgesia in children. Anaesthesia 55: 806–810PubMedCrossRefGoogle Scholar
  73. 73.
    De Negri P, Ivani G, Visconti C et al (2001) How to prolong postoperative analgesia after caudal anaesthesia with ropivacaine in children: S-ketamine versus clonidine. Paediatr Anaesth 11: 679–683PubMedCrossRefGoogle Scholar
  74. 74.
    Ozbek H, Bilen A, Ozcengiz D et al (2002) The comparison of caudal ketamine, alfentanil and ketamine or alfentanil administration for postoperative analgesia in children. Paediatr Anaesth 12: 610–616PubMedCrossRefGoogle Scholar
  75. 75.
    Hager H, Marhofer P, Sitzwohl C et al (2002) Caudal clonidine prolongs analgesia from caudal S(+)-ketamine in children. Anesth Analg 94: 1169–1172PubMedCrossRefGoogle Scholar
  76. 76.
    Bowdle TA, Radant AD, Cowley DS et al (1998) Psychedelic effects of ketamine in healthy volunteers. Relationship to plasma concentrations. Anesthesiology 88: 82–88PubMedCrossRefGoogle Scholar
  77. 77.
    Krystal JH, Karper LP, Seibyl JP et al (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Arch Gen Psychiatry 51: 199–214PubMedCrossRefGoogle Scholar
  78. 78.
    Vollenweider FX, Leenders KL, Oye I et al (1997) Differential psychopathology and patterns of cerebral glucose utilisation produced by (S)- and (R)-ketamine in healthy volunteers using positron emission tomography. Eur Neuropsychopharmacol 7: 25–38PubMedCrossRefGoogle Scholar
  79. 79.
    Pfenninger EG, Durieux ME, Himmelseher S (2002) Cognitive impairment after small-dose ketamine isomers in comparison to equianalgesic racemic ketamine in human volunteers. Anesthesiology 96: 357–366PubMedCrossRefGoogle Scholar
  80. 80.
    White PF, Schüttler J, Shafer A et al (1985) Comparative pharmacology of the ketamine isomers. Br J Anaesth 57: 197–203PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 2004

Authors and Affiliations

  • S. Himmelseher
  • E. Kochs

There are no affiliations available

Personalised recommendations