Intraoperative volume optimisation

  • M. Parrinello
  • L. M. Sá Malbouisson
  • J. O. C. Auler
Conference paper


The accurate estimation of effective intravascular volume is of great importance in patients after major vascular procedures. The main goal of achieving an adequate preload is to improve the ability of the left ventricle to cope with alterations in contractility or afterload and maintain cardiac output. Because major surgical procedures are associated with imperceptible fluid losses, blood loss, large amounts of intravenous fluids, and underlying cardiovascular pathology, patients may have either inadequate or excessive preload postoperatively. Volume status is particularly difficult to assess during the early recovery period during which mechanical ventilation is still necessary. There are several reasons why conventional haemodynamic monitoring may give a poor indication of changes in intravascular volume. During anaesthesia, hypovolaemia occurs frequently without being accompanied by tachycardia. This is because baroreflexes are depressed by anaesthetic agents and because the volume receptors in the right atrium are unloaded by the decreased venous return.


Stroke Volume Pulmonary Capillary Wedge Pressure Fluid Responsiveness Stroke Volume Variation Volume Replacement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Braunwald E, Sonnenblinck EH, Ross J (1988) Mechanism of cardiac contraction and relaxation. In: Braunwald E (ed) Heart disease. WB Saunders, Philadelphia, pp 383–425Google Scholar
  2. 2.
    Cooper AB, Doig GS, Sibbald WJ (1996) Pulmonary artery catheters in the critically ill: an overview using the methodology of evidence-based medicine. Crit Care Clin 12: 777–794PubMedCrossRefGoogle Scholar
  3. 3.
    Connors AF Jr, Speroff T, Dawson NV et al (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. JAMA 276: 889–897PubMedCrossRefGoogle Scholar
  4. 4.
    Sandham JD, Hull RD, Brant RF et al (2003) A randomized, controlled trial of the use of pulmonary-artery catheters in high risk surgical patients. N Engl J Med 348: 5–14PubMedCrossRefGoogle Scholar
  5. 5.
    Tousignant CP, Walsh F, Mazer CD (2000) The use of transesophageal echocardiography for preload assessment in critically ill patients. Anesth Analg 90: 351–355PubMedGoogle Scholar
  6. 6.
    Poli de Figuerido LF, Malbouisson LM, Varicoda EY et al (1999) Thermal filament continuous thermodilution cardiac output delayed response limits its value during acute hemodynamic instability. J Trauma 47: 288–293CrossRefGoogle Scholar
  7. 7.
    Wagner GJ, Leatherman JW (1998) Right ventricular end-diastolic volume as a predictor of the hemodynamic response to a fluid challenge. Chest 113: 1048–1054PubMedCrossRefGoogle Scholar
  8. 8.
    Diebel NL, Wilson RF, Tagett MG et al (1992) End diastolic volume. A better indicator of preload in the critically ill. Arch Surg 127: 817–822PubMedCrossRefGoogle Scholar
  9. 9.
    Marik PE (1999) Pulmonary artery catheterization and esophageal Doppler monitoring in the ICU. Chest 116: 1085–1091PubMedCrossRefGoogle Scholar
  10. 10.
    Feinberg MS, Hopkins WE, Davila-Roman VG et al (1995) Multiplane transesophageal echocardiograhic Doppler imaging accurately determines cardiac output measurements in critically ill patients. Chest 107: 769–773PubMedCrossRefGoogle Scholar
  11. 11.
    Sinclair S, James S, Singer M (1997) Intraoperative intravascular volume optimization and length of hospital stay after repair of proximal femoral fracture: randomized controlled trial. BMJ 315: 909–912PubMedCrossRefGoogle Scholar
  12. 12.
    Singer M, Bennet ED (1991) Noninvasive optimization of the left ventricular filling by esophageal Doppler. Crit Care Med 19: 1132–1137Google Scholar
  13. 13.
    Di Corte CJ, Latham P, Grellich PE et al (2000) Esophageal Doppler monitor determination of cardiac output and preload during cardiac operations. Ann Thorac Surg 69: 1782–1786CrossRefGoogle Scholar
  14. 14.
    Nishimura R, Abel M, Hatle L et al (1990) Relation of pulmonary vein to mitral flow velocities by transesophageal Doppler echocardiography. Circulation 81: 1488–1497PubMedCrossRefGoogle Scholar
  15. 15.
    Fontes ML, Bellows W, Ngo L et al (1999) Assessment of ventricular function in critically ill patients: limitation of pulmonary artery catheterization. J Cardiothorac Vasc Anesth 13: 521–527PubMedCrossRefGoogle Scholar
  16. 16.
    Jacka MJ, Cohen MM, To T et al (2002) The use of and preferences for the transesophageal echocardiogram and pulmonary artery catheterization. J Cardiothorac Vasc Anesth 94: 1065–1071Google Scholar
  17. 17.
    De Hert S, Vander Linden P, Ten Broecke P et al (2000) Assessment of length-dependent regulation of myocardial function in coronary surgery patients using transmitral flow velocity patterns. Anesthesiology 93: 374–381PubMedCrossRefGoogle Scholar
  18. 18.
    Lattik R, Couture P, Denault A et al (2002) Mitral Doppler indices are superior to two dimensional echocardiography and hemodynamic variables in predicting responsiveness of cardiac output to a rapid intravenous infusion of colloid. Anesth Analg 94: 1092–1099PubMedCrossRefGoogle Scholar
  19. 19.
    Tavernier B, Makhotine O, Lebuffe G et al (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis induced hypotension. Anesthesiology 89: 1313–1321PubMedCrossRefGoogle Scholar
  20. 20.
    Bouhemad B, Nicolas-Robin A, Benois A et al (2003) Echocardiographic Doppler assessment of pulmonary capillary wedge pressure in surgical patients with postoperative circulatory shock and acute lung injury. Anesthesiology 98: 1091–1100PubMedCrossRefGoogle Scholar
  21. 21.
    Michard F, Teboul JL (2000) Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care 4: 282–289PubMedCrossRefGoogle Scholar
  22. 22.
    Jardin F, Delorme G, Hardy A et al (1990) Revaluation of hemodynamic consequences of positive pressure ventilation. Anesthesiology 72: 966–970PubMedCrossRefGoogle Scholar
  23. 23.
    Pinsky MR, Matuschak GM, Klain M (1985) Determinants of cardiac augmentation by elevations in intrathoracic pressure. J Appl Physiol 58: 1189–1198PubMedGoogle Scholar
  24. 24.
    Perel A, Pizov R, Coley S (1987) Systolic pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology 67: 498–502PubMedCrossRefGoogle Scholar
  25. 25.
    Denault AY, Gaisor TA, Gorcsan Jet al (2000) Determinants of aortic pressure variations during positive-pressure ventilation in man. Chest 116: 176–186CrossRefGoogle Scholar
  26. 26.
    Wesseling KH, de Wit B, Weber JAP et al (1983) A simple device for the continuous measurement of cardiac output. Adv Cardiovasc Physiol 5: 16–52Google Scholar
  27. 27.
    Godje O, Hoeke K, Lichtwarck-Aschoff M et al (1999) Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour analysis: comparison with pulmonary arterial thermodilution. Crit Care Med 27: 2407–2412CrossRefGoogle Scholar
  28. 28.
    Michard F, Chemla D, Richard C et al (1999) Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effects of PEEP. Am J Respir Crit Care Med 159: 935–939PubMedGoogle Scholar
  29. 29.
    Wiesenack C, Prasser C, Rodig G et al (2003) Stroke volume variation as an indicator of fluid responsiveness using pulse contour analysis in mechanically ventilated patients. Anesth Analg 96: 1254–1257PubMedCrossRefGoogle Scholar
  30. 30.
    Reuter DA, Felbinger TW, Schmidt C et al (2002) Stroke volume variation for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med 28: 392–398PubMedCrossRefGoogle Scholar
  31. 31.
    Perel A, Berkenstadt H, Katzenelson R et al (1998) Cardiac output measurement using an axillary arterial thermodilution technique. Intensive Care Med 24: S50Google Scholar
  32. 32.
    Bindels AJ, van der Hoeven JG, Graafland AD et al (2000) Relationships between volume and pressure measurements and stroke volume in critically ill patients. Crit Care 4: 193–199PubMedCrossRefGoogle Scholar
  33. 33.
    Reuter DA, Felbinger TW, Kilger E et al (2002) Optimizing fluid therapy in mechanically ventilated patients after cardiac surgery by on-line monitoring of left ventricular stroke volume variations: comparison with aortic systolic pressure variations. Br J Anaesth 88: 124–126PubMedCrossRefGoogle Scholar
  34. 34.
    Della Rocca G, Costa MG, Coccia C et al (2002) Preload index: pulmonary artery occlusion pressure versus intrathoracic blood volume monitoring during lung transplantation. Anesth Analg 95: 835–843PubMedGoogle Scholar
  35. 35.
    Thijs LG (1995) Fluid therapy in septic shock. In: Sibblad WJ, Vincent JL (eds) Clinical trials for the treatment of sepsis. (Update in intensive care and emergency medicine, vol 19 ) Springer, New York, pp 167–190Google Scholar
  36. 36.
    Vincent JL (1991) The colloid-crystalloid controversy. Klin Wochensch 69: S104–111Google Scholar
  37. 37.
    Rackow EC, Falk JL, Fein A et al (1983) Fluid resuscitation in circulatory shock: a comparison of the cardiorespiratory effects of albumin, hetastarch, and saline solution in patients with hypovolemic and septic shock. Crit Care Med 11: 839–850PubMedCrossRefGoogle Scholar
  38. 38.
    Hankein K, Radel C, Beez M et al (1989) Comparison of hydroxyethyl starch and lactated Ringer’s solution on hemodynamics and oxygen transport of critically ill patients in prospective cross-over studies. Crit Care Med 17: 133–135CrossRefGoogle Scholar
  39. 39.
    Schierhout G, Roberts I (1998) Fluid resuscitation with colloids or crystalloids in critically ill patients: a systematic review of randomized trials. BMJ 316: 961–964PubMedCrossRefGoogle Scholar
  40. 40.
    Choi P, Yip G, Quinonez L et al (1992) Crystalloids versus colloids in fluid resuscitation: a systematic review. Crit Care Med 27: 200–210CrossRefGoogle Scholar
  41. 41.
    Boldt J, Lenz M, Kumle B et al (1998) Volume replacement strategies on intensive care units: results from a postal survey. Intensive Care Med 24: 147–151PubMedCrossRefGoogle Scholar
  42. 42.
    Strauss RG (1998) Volume replacement and coagulation: a comparative review. J Cardiothorac Anesth 2: 24–32CrossRefGoogle Scholar
  43. 43.
    Hillman K, Bishop G, Bristow P (1997) The crystalloid versus colloid controversy: present status. Baillieres Clin Anaesthesiol 11: 1–13CrossRefGoogle Scholar
  44. 44.
    Wang P, Hauptman JG, Chaudry IH (1990) Hemorrhage produces depression in microvascular blood flow which persists despite fluid resuscitation. Crit Shock 32: 307–318Google Scholar
  45. 45.
    Funk W, Baldinger V (1995) Microcirculatory perfusion during volume therapy: a comparative study using crystalloid or colloid in awake animals. Anesthesiology 82: 975–982PubMedCrossRefGoogle Scholar
  46. 46.
    de Felippe J Jr, Timoner J, Velasco IT et al (1980) Treatment of refractory hypovolemic shock by 7.5% sodium chloride injections. Lancet II: 1002–1004CrossRefGoogle Scholar
  47. 47.
    Kreimeier U, Bruckner U, Niemczyk Set al (1990) Hyperosmotic saline dextran for resuscitation from traumatic-hemorrhagic hypotension: effect on regional blood flow. Circ Shock 32: 83–99PubMedGoogle Scholar
  48. 48.
    Walsh JC, Kramer GC (1991) Resuscitation of hypovolemic sheep with hypertonic saline/dextran: the role of dextran. Circ Shock 34: 336–343PubMedGoogle Scholar
  49. 49.
    Mols P, Robert P, Henry B et al (1999) Study on the feasibility and hemodynamic efficacy of intravenous administration of small 7.2% NaC1 6% hydroxyethyl starch 200/0.5 in trauma patients during the pre-hospital period: a pilot study. JEUR 3: 99–104Google Scholar
  50. 50.
    Vassar MJ, Fisher RP, O’Brien PE et al (1993) A multicentre trial for resuscitation of injured patients with 7.5% sodium chloride. The multicenter group for the study of hypertonie saline in trauma patients. Arch Surg 128: 1003–1111PubMedCrossRefGoogle Scholar
  51. 51.
    Wade CE, Grady JJ, Kramer GC et al (1997) Individual patient cohort analysis of the efficacy of hypertonic saline/dextran in patients with traumatic brain injury and hypotension. J Trauma 42: S61 - S65PubMedCrossRefGoogle Scholar
  52. 52.
    Reed LL, Mangano R, Martin M et al (1991) The effect of hypertonic saline resuscitation on bacterial translocation after hemorrhagic shock in rats. Surgery 110: 685–690PubMedGoogle Scholar
  53. 53.
    Kreimeier U, Frey L, Messmer K (1993) Small-volume resuscitation. Curr Opin Anaesth 6: 400–408CrossRefGoogle Scholar
  54. 54.
    Rubin H, Carlson S, de Meo M et al (1997) Randomized, double-blind study of intravenous human albumin in hypoalbuminemic patients receiving total parenteral nutrition. Crit Care Med 25: 249–252PubMedCrossRefGoogle Scholar
  55. 55.
    Sapijaszko MJA, Brant R, Sanham D et al (1996) Non—respiratory predictor of mechanical ventilation dependency in intensive care unit patients. Crit Care Med 24: 601–607PubMedCrossRefGoogle Scholar
  56. 56.
    Cochrane Injuries Group Albumin Reviewers (1998) Human albumin administration in critically ill patients: systematic review of randomized controlled trials. BMJ 317: 235–240CrossRefGoogle Scholar
  57. 57.
    Arfors KE, Buckley P (1997) Pharmacological characteristics of artificial colloids. Baillieres Clin Anaesth 11: 15–47CrossRefGoogle Scholar
  58. 58.
    Paull J (1987) A prospective study of dextran-induced anaphylactoid reactions in 5745 patients. Anaesth Intensive Care 15: 165–167Google Scholar
  59. 59.
    Abramson N (1988) Plasma expanders and bleeding. Ann Intern Med 108: 307–312PubMedGoogle Scholar
  60. 60.
    Karoutsos S, Nathan N, Lahrimi A et al (1999) Thromboelastogram reveals hypercoagulability after administration of gelatin solution. Br J Anaesth 82: 175–177PubMedCrossRefGoogle Scholar
  61. 61.
    Evans PA, Glenn JR, Heptinstall S et al (1998) Effects of gelatin-based resuscitation fluids on platelet aggregation. Br J Anaesth 81: 198–192PubMedCrossRefGoogle Scholar
  62. 62.
    Laxenaire M, Charpentier C, Feldman L (1994) Réaction anaphylactoides aux subsitutes colloidaux du plasma: incidence, facteurs de risque, mécanismes. Ann Fr Anesth Reanim 13: 301–310PubMedCrossRefGoogle Scholar
  63. 63.
    Treib J, Baron JF, Grauer MT et al (1999) An international view of hydroxyethyl starches. Intensive Care Med 25: 258–268PubMedCrossRefGoogle Scholar
  64. 64.
    Cope JT, Banks D, Mauney MC et al (1997) Intraoperative hetastarch infusion impairs hemostasis after cardiac operations. Ann Thorac Surg 63: 78–82PubMedCrossRefGoogle Scholar
  65. 65.
    Boldt J, Muller M, Heesen M et al (1996) Influence of different volume therapy on platelet function in the critically ill. Intensive Care Med 22: 1075–1081PubMedCrossRefGoogle Scholar
  66. 66.
    Citanova ML, Leblanc I, Legendre C et al (1996) Effect of hydroxyethyl-starch in brain-dead kidney donors on renal function in kidney-transplant recipients. Lancet 348: 1620–1622CrossRefGoogle Scholar
  67. 67.
    Boldt J, Muller M, Menteges D et al (1998) Volume therapy in the critically ill. Is there a difference? Intensive Care Med 24: 28–36PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia, Milano 2004

Authors and Affiliations

  • M. Parrinello
  • L. M. Sá Malbouisson
  • J. O. C. Auler

There are no affiliations available

Personalised recommendations