Advertisement

Evolutionary Studies on Teleost Hemoglobin Sequences

  • Wytze T. Stam
  • Jaap J. Beintema
  • Rossana D’Avino
  • Maurizio Tamburrini
  • Ennio Cocca
  • Guido di Prisco

Abstract

During cold adaptation, the blood of Antarctic fish has acquired some features which clearly differentiate these fish from fish of temperate and tropical climates. A much lower erythrocyte and hemoglobin content counteracts the temperature-induced viscosity increase in the blood and, consequently, cardiac work is greatly facilitated. At the extreme end of such evolution, the blood of the Notothenioid family Channichthyidae (a unique case among vertebrates) is characterized by the total lack of hemoglobin.

Keywords

Parsimonious Tree Antarctic Fish Much Parsimonious Tree Thunnus Thynnus Pleuragramma Antarcticum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Riggs A (1970) Properties of fish hemoglobins. In: Hoar WS, Randall DJ (eds) Fish physiology, Vol IV, Academic Press, New York, pp 209–252Google Scholar
  2. 2.
    Stam WT, Beintema JJ, D’Avino R, Tamburrini M, di Prisco G (1997) Molecular evolution of hemoglobins of Antarctic fishes (Notothenioidae). J Mol Evol 45:437–445PubMedCrossRefGoogle Scholar
  3. 3.
    Nelson JS (1994) Fishes of the world. 3rd edition. John Wiley, New York. 600 ppGoogle Scholar
  4. 4.
    Swofford DL (1993) PAUP (phylogenetic analysis using parsimony), version 3.1.1. User’s manual by Swofford DL, Begle DP, Laboratory of Molecular Systematics, Smithsonian Institution, Washington DC, 257 ppGoogle Scholar
  5. 5.
    Felsenstein J (1989) PHYLIP — phylogeny inference package (version 3.2). Cladistics 5:164–166Google Scholar
  6. 6.
    Tamburrini M, D’Avino R, Fago A, Carratore V, Kunzmann A, di Prisco G (1996) The unique hemoglobin system of Pleuragramma antarcticwn, an Antarctic migrating teleost. Structure and function of the three components. J Biol Chem 271:23780–23785PubMedCrossRefGoogle Scholar
  7. 7.
    Balushkin AV (1992) Classification, phylogenetic relationships, and origins of the family suborder Notothenioidei (Perciformes). J Ichthyol 30:132–147Google Scholar
  8. 8.
    Pisano E, Ozouf-Costaz C, Hureau J-C, Williams R (1995) Chromosome differentiation in the subAntarctic Bovichtidae species Cottoperca gobio (Günther, 1861) and Pseudaphritis urvillii (Valenciennes, 1832) (Pisces, Perciformes). Antarct Sci 7:381–386CrossRefGoogle Scholar
  9. 9.
    Ritchie PA, Lavoué S, Lecointre G (1997) Molecular phylogenetics and the evolution of Antarctic notothenioid fishes. Comp Biochem Physiol 118A:1009–1026CrossRefGoogle Scholar
  10. 10.
    di Prisco G, Tamburrini M, D’Avino R (1997) Oxygen-transport systems in extreme environments: multiplicity and structure/function relationship in hemoglobins of Antarctic fish. In: Pörtner HO, Playe R (eds) Cold ocean physiology. Soc Exptl Biol Seminar Series 66. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag Italia 1998

Authors and Affiliations

  • Wytze T. Stam
    • 1
  • Jaap J. Beintema
    • 2
  • Rossana D’Avino
    • 3
  • Maurizio Tamburrini
    • 3
  • Ennio Cocca
    • 3
  • Guido di Prisco
    • 3
  1. 1.Department of Marine BiologyUniversity of GroningenHarenThe Netherlands
  2. 2.Department of BiochemistryUniversity of GroningenHarenThe Netherlands
  3. 3.Institute of Protein Biochemistry and EnzymologyCNRNaplesItaly

Personalised recommendations