Advertisement

Molecular Adaptations of Antarctic Fish Hemoglobins

  • Guido di Prisco

Abstract

Following the inception in 1985 of the Italian National Programme for Antarctic Research and the consequent development of our studies on the structure and function of hemoglobin (Hb) [1, 2, 3, 4, 5], we have now reached a stage in which we are finally able to begin identifying firm guidelines for understanding the interplay among biochemical/physiological processes of oxygen transport, ecology and adaptive evolution.

Keywords

Globin Gene Antarctic Fish Molecular Adaptation Bohr Effect Root Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    di Prisco G, D’Avino R, Caruso C, Tamburrini M, Camardella L, Rutigliano B, Carratore V, Romano M (1991) The biochemistry of oxygen transport in red-blooded Antarctic fish. In: di Prisco G, Maresca B, Tota B (eds) Biology of Antarctic fish. Springer-Verlag, Berlin Heidelberg New York, pp 263–281CrossRefGoogle Scholar
  2. 2.
    di Prisco G, Camardella L, Caruso C, D’Avino R, Fago A, Kunzmann A, Tamburrini M (1993) Antarctic fish and cold adaptation: structure and function of haemoglobin. Abstr 18th Lorne Conference “Protein structure and function”, Lorne, Australia, p 13Google Scholar
  3. 3.
    di Prisco G, Giardina B (1996) Temperature adaptation: molecular aspects. In: Johnston IA, Bennett AF (eds) Animals and temperature. Phenotypic and evolutionary adaptation. Soc Exptl Biol, Seminar Series 59. Cambridge University Press, Cambridge, pp 23–51CrossRefGoogle Scholar
  4. 4.
    di Prisco G (1997) Physiological and biochemical adaptations in fish to a cold marine environment. In: Battaglia B, Valencia J, Walton DWH (eds) Proc SCAR 6th Biol Symp, Venice (Antarctic communities: species, structure and survival). Cambridge University Press, Cambridge, pp 251–260Google Scholar
  5. 5.
    di Prisco G, Tamburrini M, D’Avino R (1997) Oxygen-transport systems in extreme environments: multiplicity and structure/function relationship in hemoglobins of Antarctic fish. In: Pörtner HO, Playle R (eds) Cold ocean physiology. Soc Exptl Biol, Seminar Series 66. Cambridge University Press, CambridgeGoogle Scholar
  6. 6.
    Gon O, Heemstra PC (eds) (1990) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, South AfricaGoogle Scholar
  7. 7.
    Eastman JT (1993) Antarctic fish biology. Evolution in a unique environment. Academic Press, San DiegoGoogle Scholar
  8. 8.
    Ruud JT (1954) Vertebrates without erythrocytes and blood pigment. Nature 173:848–850PubMedCrossRefGoogle Scholar
  9. 9.
    Wells RMG, Macdonald JA, di Prisco G (1990) Thin-blooded Antarctic fishes: a rheological comparison of the haemoglobin-free icefishes Chionodraco kathleenae and Cryodraco antarcticus with a red-blooded nototheniid, Pagothenia bernacchii. J Fish Biol 36:595–609CrossRefGoogle Scholar
  10. 10.
    di Prisco G, Macdonald JA, Brunori M (1992) Antarctic fish survive exposure to carbon monoxide. Experientia 48:473–475PubMedCrossRefGoogle Scholar
  11. 11.
    Riggs AF (1988) The Bohr effect. Ann Rev Physiol 50:181–204CrossRefGoogle Scholar
  12. 12.
    Brittain T (1987) The Root effect. Comp Biochem Physiol 86B:473–481Google Scholar
  13. 13.
    Giardina B, Amiconi G (1981) Measurement of binding of gaseous and nongaseous ligands to hemoglobins by conventional spectrophotometric procedures. Methods Enzymol 76:417–427PubMedCrossRefGoogle Scholar
  14. 14.
    D’Avino R, di Prisco G (1989) Hemoglobin from the Antarctic fish Notothenia coriiceps neglecta. 1. Purification and characterisation. Eur J Biochem 179:699–705PubMedCrossRefGoogle Scholar
  15. 15.
    D’Avino R, Fago A, Kunzmann A, di Prisco G (1992) The primary structure and oxygen-binding properties of the high-Antarctic fish Aethotaxis mitopteryx DeWitt. Polar Biol 12:135–140Google Scholar
  16. 16.
    Tamburrini M, Brancaccio A, Ippoliti R, di Prisco G (1992) The amino acid sequence and oxygen-binding properties of the single hemoglobin of the cold-adapted Antarctic teleost Gymnodraco acuticeps. Arch Biochem Biophys 292:295–302PubMedCrossRefGoogle Scholar
  17. 17.
    D’Avino R, Caruso C, Tamburrini M, Romano M, Rutigliano B, Polverino de Laureto P, Camardella L, Carratore V, di Prisco G (1994) Molecular characterization of the functionally distinct hemoglobins of the Antarctic fish Trematomus newnesi. J Biol Chem 269:9675–9681PubMedGoogle Scholar
  18. 18.
    Hubold G (1985) On the early life history of the high-Antarctic silverfish Pleuragramma antarcticum. In: Siegfried WR, Condy PR, Laws RM (eds) Proc 4th SCAR Biol Symp (Antarctic nutrient cycles and food webs). Springer-Verlag, Berlin Heidelberg New York, pp 445–451Google Scholar
  19. 19.
    Tamburrini M, D’Avino R, Fago A, Carratore V, Kunzmann A, di Prisco G (1994) The unique hemoglobin system of Pleuragramma antarcticum, a high-Antarctic fish with holopelagic mode of life. Abstr SCAR 6th Biol Symp, Venice, p 261Google Scholar
  20. 20.
    Tamburrini M, D’Avino R, Fago A, Carratore V, Kunzmann A, di Prisco G (1996) The unique hemoglobin system of Pleuragramma antarcticum, an Antarctic migratory teleost. Structure and function of the three components. J Biol Chem 271:23780–23785PubMedCrossRefGoogle Scholar
  21. 21.
    Tamburrini M, D’Avino R, Carratore V, Kunzmann A, di Prisco G (1997) The hemoglobin system of Pleuragramma antarcticum: correlation of hematological and biochemical adaptations with life style. Comp Biochem Physiol, 118A:1037–1044CrossRefGoogle Scholar
  22. 22.
    Macdonald JA, Wells RMG (1991) Viscosity of body fluids from Antarctic notothenioid fish. In: di Prisco G, Maresca B, Tota B (eds) Biology of Antarctic fish. Springer-Verlag, Berlin, Heidelberg, New York, pp 163–178CrossRefGoogle Scholar
  23. 23.
    Tamburrini M, di Prisco G (1994) The unique features of the hemoglobin system of the Antarctic teleost Pagothenia borchgrevinki. “Proteine’ 94”, Abstr A25, p 43Google Scholar
  24. 24.
    Tamburrini M, Romano M, di Prisco G (1996) Unique oxygen-binding characteristics of the hemoglobins of two Antarctic fish species of the family Artedidraconidae. 3rd Workshop (Antarctic fish: ecology, lifestyle and adaptive evolution. Comparison with Arctic fish) of the European Science Foundation Network “Fishes of the Antarctic Ocean”, Saint Rémy-lès-Chevreuse, FranceGoogle Scholar
  25. 25.
    Tamburrini M, Romano M, Coletta M, di Prisco G (1995) The hemoglobin of the Antarctic teleost Artedidraco orianae. Amino acid sequence and ligand binding properties. Abstr 23rd Meet Fed Eur Biochem Soc, P66.13Google Scholar
  26. 26.
    Tetens V, Brittain T, Christie DL, Robb J, Wells RMG (1984) Characterization and function of isolated hemoglobins from the tuatara, Sphenodon punctatus (Reptilia: O. Rhynchocephalia). Comp Biochem Physiol 79B:119–123Google Scholar
  27. 27.
    Iwami T (1985) Osteology and relationships of the family Channichthyidae. Mem Natl Inst Polar Res, Tokyo, Ser E, No 36, 1–69Google Scholar
  28. 28.
    Balushkin AV (1984) Morphological bases of the systematics and phylogeny of nototheniid fishes. Acad Sci USSR, Zool Inst Leningrad, 1–140Google Scholar
  29. 29.
    Prirodina VP (1986) Karyotypes of Cottoperca gobio (Bovichthyidae, Notothenioidei) as compared to karyotypes of other Notothenioidei. USSR Acad Sci Proc Zool Inst, Leningrad 153: 67–71Google Scholar
  30. 30.
    Hureau J-C (1986) Relations phylogénétiques au sein des Notothenioidei. Océanis 12(5):367–376Google Scholar
  31. 31.
    Andriashev AP (1987) A general review of the Antarctic bottom fish fauna. In: Kullander SO, Fernholm B (eds) Proc 5th Congr Eur Ichthyol, Stockholm. Swedish Museum of Natural History, Stockholm, pp 357–372Google Scholar
  32. 32.
    Bargelloni L, Ritchie PA, Patarnello T, Battaglia S, Lambert DM, Mayer A (1994) Molecular evolution at subzero temperatures: mitochondrial and nuclear phylogenesis of fishes from Antarctica (suborder Notothenioidei), and the evolution of antifreeze glycopeptides. Mol Biol Evol 11:854–863PubMedGoogle Scholar
  33. 33.
    Balushkin AV (1992) Classification, phylogenetic relationships, and origins of the families of the suborder Notothenioidei (Perciformes). J Ichthyol 32(7):90–110Google Scholar
  34. 34.
    D’Avino R, di Prisco G (1997) The hemoglobin system of Antarctic and non-Antarctic notothenioid fishes. Comp Biochem Physiol, 118A: 1045–1049CrossRefGoogle Scholar
  35. 35.
    D’Avino R, Fago A, di Prisco G (1994) Structural and functional characterisation of the hemoglobin of an estuarine fish. Ital J Biochem 43(5):221–222AGoogle Scholar
  36. 36.
    D’Avino R, Romano M, Carratore V, di Prisco G (1995) Structure and function of the main hemoglobin of Pseudaphritis urvillii, an estuarine temperate Bovichtid. 2nd Workshop (Relationships linking ecology, lifestyle and adaptive evolution in Antarctic fish) of the European Science Foundation Network “Fishes of the Antarctic Ocean”, Liege, BelgiumGoogle Scholar
  37. 37.
    Fago A, D’Avino R, di Prisco G (1992) The hemoglobins of Notothenia angustata, a temperate fish belonging to a family largely endemic to the Antarctic Ocean. Eur J Biochem 210:963–970PubMedCrossRefGoogle Scholar
  38. 38.
    Cocca E, Ratnayake-Lecamwasam M, Parker SK, Camardella L, Ciaramella M, di Prisco G, Detrich HW III (1995) Genomic remnants of α-globin genes in the hemoglobinless Antarctic icefishes. Proc Natl Acad Sci USA 92:1817–1821PubMedCrossRefGoogle Scholar
  39. 39.
    Detrich HW III, Cocca E, Ratnayake-Lecamwasam M, Parker SK, Camardella L, Ciaramella M, di Prisco G (1995) ß-Globin gene deletion in the hemoglobinless Antarctic icefishes. 37th Am Soc Hematol Meet, Seattle, USAGoogle Scholar
  40. 40.
    Ratnayake-Lecamwasam M, Parker SK, Detrich HW III, Cocca E, Camardella L, Ciaramella M, di Prisco G (1995) Do the hemoglobinless Antarctic icefishes possess globin genes? Antarctic J US 30:179–182Google Scholar
  41. 41.
    Camardella L, Caruso C, D’Avino R, di Prisco G, Rutigliano B, Tamburrini M, Fermi G, Perutz MF (1992) Haemoglobin of the Antarctic fish Pagothenia bernacchii. Amino acid sequence, oxygen equilibria and crystal structure of its carbomonoxy derivative. J Mol Biol 224:449–460PubMedCrossRefGoogle Scholar
  42. 42.
    Perutz MF, Brunori M (1982) Stereochemistry of cooperative effects in fish and amphibian haemoglobins. Nature 299:421–426PubMedCrossRefGoogle Scholar
  43. 43.
    Stam WT, Beintema JJ, D’Avino R, Tamburrini M, di Prisco G (1996) Molecular evolution of hemoglobin of Antarctic fishes (Notothenioidei). 3rd Workshop (Antarctic fish: ecology, lifestyle and adaptive evolution. Comparison with Arctic fish) of the European Science Foundation Network “Fishes of the Antarctic Ocean”, Saint Remy-les-Chevreuse, FranceGoogle Scholar
  44. 44.
    Stam WT, Beintema JJ, D’Avino R, Tamburrini M, di Prisco G. (1997) Molecular evolution of hemoglobins of Antarctic fishes (Notothenioidei). J Mol Evol, 45:437–445PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1998

Authors and Affiliations

  • Guido di Prisco
    • 1
  1. 1.Institute of Protein Biochemistry and EnzymologyCNRNaplesItaly

Personalised recommendations