Skip to main content

Evolution of Sensory Systems: A Comparison of Antarctic and Deep-Sea Ichthyofauna

  • Chapter
Fishes of Antarctica

Abstract

There are many similarities between Antarctic seas and the deep ocean the principal ones being that both are cold and dark. Antarctic high latitude basins are effectively dark for the duration of the Antarctic winter. Even during summer, ice cover extensively reduces light levels, and the continental shelf is deeper (∼600 m) than for other continents (∼200 m).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Montgomery JC, Pankhurst NW (1997) Sensory biology. In: Randall DJ, Farrell AP (eds) Deep sea fish. Fish Physiology Series, Vol. 16. Academic Press, San Diego, pp. 325–349

    Chapter  Google Scholar 

  2. Eastman JT, Grande L (1989) Evolution of the Antarctic fish fauna with emphasis on recent notothenioids. In: Crame JA (ed) Origins and evolution of the Antarctic biota. US Geol Soc Spec Pub No. 47: 241–252

    Google Scholar 

  3. Bargelloni L, Ritchie PA, Patarnello T, Battaglia B, Lambert DM, Meyer A (1994) Molecular evolution at subzero temperatures: mitochondrial and nuclear phylogenies of fishes from Antarctica (suborder Notothenioidei), and the evolution of antifreeze glycopeptides. Mol Biol Evol 11:854–863

    PubMed  CAS  Google Scholar 

  4. Kennett P (1977) Cenozoic evolution of Antarctic glaciation, the circum-Antarctic ocean and their impact on global paleoceanography. J Geophysical Research 82: 3843–3876

    Article  CAS  Google Scholar 

  5. Long JA (1995) The rise of fishes. University of New South Wales Press, Sydney

    Google Scholar 

  6. Paulin C, Stewart A, Roberts C, McMillan P (1989) New Zealand fish: a complete guide. National Museum of NZ Misc, Series 19: pp 279

    Google Scholar 

  7. Caprio J (1988). Peripheral filters and chemoreceptor cells in fishes. In: Atema J, Fay RR, Popper AN and Tavolga WN (eds) Sensory biology of aquatic animals. Springer-Verlag. New York. pp 313–338

    Chapter  Google Scholar 

  8. Yamamoto M (1982) Comparative morphology of the peripheral olfactory organ in teleosts. In: Hara TJ (ed.) Chemoreception in fishes. Elsevier, New York, pp 39–59

    Google Scholar 

  9. Marshall NB (1979) Developments in deep-sea biology. Blandford Press, Poole

    Google Scholar 

  10. Baird RC, Jumper GY (1993) Olfactory organs in the deep sea hatchetfish Sternoptyx diaphana (Stomiiformes, Sternoptychidae). Bull Mar Sci 53: 1163–1167

    Google Scholar 

  11. Pankhurst NW, Montgomery JC (1989) Visual function in four Antarctic nototheniid fishes. J Exp Biol 142: 311–324

    Google Scholar 

  12. Gon O, Heemstra PC (1990) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown

    Google Scholar 

  13. Eastman JT (1988) Ocular morphology in Antarctic notothenioid fishes. J Morphol 196: 283–306

    Article  Google Scholar 

  14. Denton EJ, Locket NA (1989) Possible wavelength discrimination by multibank retinae in deep-sea fishes. J Mar Biol Assoc UK 69: 409–435

    Article  Google Scholar 

  15. Locket NA (1985) The multiple bank fovea of Bajacalifornia drakei, an alepocephalid deep-sea teleost. Proc Roy Soc B 224: 7–22

    Article  Google Scholar 

  16. Pankhurst NW (1987) Intra-and interspecific changes in retinal morphology among mesopelagic and demersal teleosts from the slope waters of New Zealand. Environ Biol Fish 19: 269–280

    Article  Google Scholar 

  17. Coombs S, Montgomery JC (1994) Functional consequences of structural diversity in the lateral line system of Antarctic fish. Sensory Systems 8: 150–156 (translated from Russian)

    Google Scholar 

  18. Montgomery JC, Baker C, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature (in press)

    Google Scholar 

  19. Montgomery JC, Macdonald JA (1987) Sensory tuning of lateral line receptors in Antarctic fish to the movements of planktonic prey. Science 235: 195–196

    Article  PubMed  CAS  Google Scholar 

  20. Janssen J (1996) Use of the lateral line and tactile senses in feeding in four Antarctic nototheniid fishes. Envir Biol Fish 47: 51–64

    Article  Google Scholar 

  21. Janssen J, Slattery M, Jones W (1993) Feeding responses to mechanical stimulation of the barbel in Histidraco velifer (Artedidracondidae). Copeia 1993: 885–889

    Article  Google Scholar 

  22. Robilliard GA, Dayton PK (1969) Notes on the biology of the chaenichthyid fish Pagetopsis macropterus from McMurdo Sound, Antarctica. Antarct J US 4: 304–306

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Italia

About this chapter

Cite this chapter

Montgomery, J.C., Macdonald, J.A. (1998). Evolution of Sensory Systems: A Comparison of Antarctic and Deep-Sea Ichthyofauna. In: Fishes of Antarctica. Springer, Milano. https://doi.org/10.1007/978-88-470-2157-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2157-0_28

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2182-2

  • Online ISBN: 978-88-470-2157-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics