Four Years in Notothenioid Systematics: A Molecular Perspective

  • Luca Bargelloni
  • Guillaume Lecointre


The perciform suborder Notothenioidei is a highly diversified group of fish inhabiting the waters around the Antarctic continent. This is a unique environment, characterized, especially in the high Antarctic Zone, by temperatures as low as −2 °C, presence of sea ice, and large seasonal fluctuations of the primary production. At the Oligocene-Miocene boundary, about 25–22 million years ago, with the opening of the Drake Passage and the formation of a circumpolar hydrographic barrier, the Polar Front Zone, the Antarctic marine environment became effectively isolated.


Drake Passage Antarctic Fish Relative Rate Test Molecular Perspective Notothenioid Fish 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eastman JT (1993) Antarctic fish biology. Academic Press, San DiegoGoogle Scholar
  2. 2.
    Cheng CC, DeVries AL (1991) The role of antifreeze glycopeptides and peptides in the freezing avoidance of cold water fish. In: di Prisco G (ed) Life under extreme conditions: biochemical adaptation. Springer-Verlag, Berlin, pp 1–14CrossRefGoogle Scholar
  3. 3.
    Wells RMG (1987) Respiration of Antarctic fish from McMurdo Sound. Comp Biochem Physiol 88A: 417–424CrossRefGoogle Scholar
  4. 4.
    Ruud JT (1954) Vertebrates without erythrocytes and blood pigment. Nature 173: 848–850PubMedCrossRefGoogle Scholar
  5. 5.
    Eastman JT (1985) The evolution of neutrally buoyant notothenioid fishes: their specialization and potential interactions in the Antarctic marine food web. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer-Verlag, Berlin Heidelberg, pp 430–436Google Scholar
  6. 6.
    Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, OxfordGoogle Scholar
  7. 7.
    Iwami T (1985) Osteology and relationships of the family Channichthyidae. Memoirs of National Institute of Polar Research Ser E: 1–69Google Scholar
  8. 8.
    Hastings PA (1993) Relationships of the fishes of the perciform suborder Notothenioidei. In: RG Miller (ed) A history and atlas of the fishes of the Antarctic Ocean. Foresta Institute for Ocean and Mountain Studies, Carson City, pp 99–107Google Scholar
  9. 9.
    Bargelloni L, Ritchie PA, Patarnello T, Battaglia B, Lambert DM, Meyer A (1994) Molecular evolution at subzero temperature: mitochondrial and nuclear phylogenies of fishes from Antarctica (suborder Notothenioidei), and the evolution of antifreeze glycopeptides. Mol Biol Evol 11: 854–863PubMedGoogle Scholar
  10. 10.
    Lecointre G, Bonillo C, Ozouf-Costaz C, Hureau JC (1997) Molecular phylogeny of the Antarctic fishes: paraphyly of the Bovichtidae and no indication for the monophyly of the Notothenioidei (Teleostei). Polar Biology 18: 193–208CrossRefGoogle Scholar
  11. 11.
    Swofford DL (1993) Phylogenetic analysis using parsimony (PAUP). Illinois Natural History Survey, ChampaignGoogle Scholar
  12. 12.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791CrossRefGoogle Scholar
  13. 13.
    Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Ann Rev Biochem 46: 573–639PubMedCrossRefGoogle Scholar
  14. 14.
    Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120PubMedCrossRefGoogle Scholar
  15. 15.
    Wu CI, Li WH (1985) Evidence for higher rates of nucleotide substitution in rodents than in men. Proc Natl Acad Sci USA 82: 1741–1745PubMedCrossRefGoogle Scholar
  16. 16.
    Ritchie PA, Lavoue S, Lecointre G (1997) Molecular phylogenetics and the evolution of Antarctic notothenioid fishes. Comp Biochem Physiol 118A:1009–1026CrossRefGoogle Scholar
  17. 17.
    Balushkin AV (1992) Classification, phylogenetic, and origins of the families of the suborder Notothenioidei (Perciformes). J Ichthyol 32: 90–110Google Scholar
  18. 18.
    Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27: 401–410CrossRefGoogle Scholar
  19. 19.
    Kim J (1996) General inconsistency conditions for maximum parsimony: effects of branch lengths and increasing numbers of taxa. Syst Biol 45:363–374CrossRefGoogle Scholar
  20. 20.
    Philippe H (1997) Communication at the international symposium “Molecules and morphology in systematics”, Paris, March 1997Google Scholar
  21. 21.
    Philippe H, Adoutte A (1997) The molecular phylogeny of Protozoa: solid facts and uncertainties. In: Coombs GH, Vickerman K, Sleigh MA, Warren A (eds) Evolutionary relationships among Protozoa Systematics AssociationGoogle Scholar
  22. 22.
    Lecointre G, Philippe H, Lê HLV, Le Guyader H (1993) Species sampling has a major impact on phylogenetic inference. Mol Phyl Evol 2: 205–224CrossRefGoogle Scholar
  23. 23.
    Philippe H, Douzery E (1994) The pitfalls of molecular phylogeny based on four species, as illustrated by the Cetacea/Artiodactyla relationships. J Mam Evol 2: 133–152CrossRefGoogle Scholar
  24. 24.
    Mayr E (1982) The growth of biological thought. Diversity, evolution and inheritance. The Bellknap Press of Harvard University Press, HarvardGoogle Scholar
  25. 25.
    Romer AS (1967) Major steps in vertebrate evolution. Science 158: 1629–1637PubMedCrossRefGoogle Scholar
  26. 26.
    Dupuis C (1978) Permanence et actualité de la systématique: la “systématique phylogénétique” de W Hennig (historique, discussion, choix de références). Cahiers des Naturalistes Bull N P n s 34: 1–69Google Scholar
  27. 27.
    Gilles A, Lecointre G, Faure E, Chappaz R, Brun G (in press) Mitochondrial phylogeny of the European cyprinids: implications for their systemics, reticulate evolution and colonisation time. Mol Phyl EvolGoogle Scholar
  28. 28.
    Brooks DR, McLennan DA (1991) Phylogeny, ecology and behaviour: a research program in comparative biology. Chicago University Press, ChicagoGoogle Scholar
  29. 29.
    Caccone A, Milinkovitch MC, Sbordoni V, Powell JR (1994) Molecular biogeography: using the Corsica-Sardinia microplate disjunction to calibrate mitochondrial rDNA evolutionary rates in mountain newts (Euproctus). J Evol Biol 7: 227–245CrossRefGoogle Scholar
  30. 30.
    Rand DM (1994) Thermal habit, metabolic rate and the evolution of mitochondrial DNA. Trends Ecol Evol 9: 125–131PubMedCrossRefGoogle Scholar
  31. 31.
    Allard MW, Miyamoto MM, Jarecki L, Kraus F, Tennant MR (1992) DNA systematics and evolution of the arctiodactyl family Bovidae. Proc Natl Acad Sci USA 89: 3972–3976PubMedCrossRefGoogle Scholar
  32. 32.
    Chen L, DeVries AL, Cheng CC (1997) Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc Natl Acad Sci USA 94: 3811–3816PubMedCrossRefGoogle Scholar
  33. 33.
    Patterson C, Williams DM, Humphries CJ (1993) Congruence between molecular and morphological phylogenies. Annu Rev Ecol Syst 24: 153–188CrossRefGoogle Scholar
  34. 34.
    Voskoboynikova OS (1993) Evolution of the visceral skeleton and phylogeny of Nototheniidae. J Ichthyol 33: 23–47Google Scholar

Copyright information

© Springer-Verlag Italia 1998

Authors and Affiliations

  • Luca Bargelloni
    • 1
  • Guillaume Lecointre
    • 2
  1. 1.Dipartimento di BiologiaUniversità di PadovaPadovaItaly
  2. 2.Service de systématique moleculaire et Laboratoire d’IchtyologieMuséum National d’Histoire NaturelleParis Cedex 05France

Personalised recommendations