The Neuroendocrine System in the Intestinal Tract and Pancreas of Antarctic Fish

  • Grazia Tagliafierro
  • Marina Carlini
  • Gabriella Faraldi
  • Lorenzo Gallus


The neuroendocrine system (NES) is composed of endocrine cells and nerve elements containing a large variety of low molecular weight peptides; they are generally called neuropeptides or regulatory peptides and are contained in secretory granules. The endocrine cells can be grouped to form endocrine glands such as the pancreas, or they can be found, as single elements, within the epithelial component of different organs, such as the gut and the respiratory tract. The epithelial endocrine cells lie on the basement membrane and frequently have a cytoplasmic process extending to the lumen; this basal-granulated cell is called the open type endocrine cell. Other basal-granulated cells do not reach the lumen, and are called the closed type endocrine cell; the latter cell type lies flat on the basement membrane [1]. In both cases the release of the granule content occurs at the base of the cell near a blood vessel [2].


Vasoactive Intestinal Peptide Endocrine Cell Vasoactive Intestinal Polypeptide Regulatory Peptide Neuroendocrine System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fujita T, Kobayashi S (1977) Structure and function of gut endocrine cells. Int Rev Cytol Suppl 6:187–233PubMedGoogle Scholar
  2. 2.
    Vigna SR (1986) Gastrointestinal tract. In: Pang PKT, Schreibman MP (eds) Vertebrate endocrinology: fundamentals and biomedical implications. Academic Press, Orlando, pp 261–278Google Scholar
  3. 3.
    Fujita T, Kanno T, Kobayashi S (1988) The paraneuron. Springer-Verlag, TokyoCrossRefGoogle Scholar
  4. 4.
    Langer M, Van Noorden S, Polak JM, Pearse AGE (1979) Peptide hormone-like immunoreactivity in the gastrointestinal tract and endocrine pancreas of eleven teleost species. Cell Tissue Res 199:493–508PubMedCrossRefGoogle Scholar
  5. 5.
    Bjenning C, Holmgren S (1988) Neuropeptides in the fish gut. An immunohistochemical study of evolutionary patterns. Histochemistry 88:155–163PubMedCrossRefGoogle Scholar
  6. 6.
    Groff KE, Youson JH (1997) An immunohistochemical study of the endocrine cells within the pancreas, intestine, and stomach of the gar (Lepisosteus osseus L.). Gen Comp Endocrinol 106:1–16PubMedCrossRefGoogle Scholar
  7. 7.
    Plisetskaya EM (1989) Pancreatic peptides. In: Holmgren S (ed) The comparative physiology of regulatory peptides. Chapman and Hall, London, New York, pp 174–202CrossRefGoogle Scholar
  8. 8.
    Conlon JM (1989) Biosynthesis of regulatory peptides: evolutionary aspects. In: Holmgren S (ed) The comparative physiology of regulatory peptides. Chapman and Hall, London, New York, pp 344–369CrossRefGoogle Scholar
  9. 9.
    Uesaka T, Yano K, Yamasaki M, Ando M (1995) Somatostatin-vasoactive intestinal peptide-and granulin-like peptides isolated from intestinal extracts of goldfish, Carassius auratus. Gen Comp Endocrinol 99:298–306PubMedCrossRefGoogle Scholar
  10. 10.
    Wang Y, Conlon JM (1995) Purification and structural characterization of vasoactive intestinal polypeptide from the trout and bowfin. Gen Comp Endocrinol 98:94–101PubMedCrossRefGoogle Scholar
  11. 11.
    Larsson LI, Hougaard DM (1993) Sensitive detection of rat gastrin mRNA by in situ hybridization with chemically biotinylated oligodeoxynucleotides: validation, quantitation, and double-staining studies. J Histochem Cytochem 41:157–163PubMedCrossRefGoogle Scholar
  12. 12.
    Watson SJ, Sherman TG, Kelsey JE, Burke S, Akil H (1987) Anatomical localization of mRNA: in situ hybridization of neuropeptide systems. In: Valentino KL, Eberwine JH, Barchas JD (eds) In situ hybridization. Application to neurobiology. Oxford University Press, New York, pp 126–145Google Scholar
  13. 13.
    Holmgren S (1989) Gut motility. In: Holmgren S (ed) The comparative physiology of regulatory peptides. Chapman and Hall, London, New York, pp 231–255CrossRefGoogle Scholar
  14. 14.
    Jonsson AC, Holmgren S (1989) Gut secretion. In: Holmgren S (ed) The comparative physiology of regulatory peptides, Chapman and Hall, New York, pp 256–2781CrossRefGoogle Scholar
  15. 15.
    Shanahan F, Anton PA (1994) Role of Peptides in the regulation of the mucosal immune and inflammatory response. In: Walsh JH, Dockray GJ (eds) Gut peptides: biochemistry and physiology. Raven Press, New York, pp 851–867Google Scholar
  16. 16.
    Hill AM, McCune SK, Alvero RJ, Glazner GW, Brenneman DE (1996) VIP regulation of embryonic growth. In: Arimura A, Said SI (eds) VIP, PACAP and related peptides. Ann NY Acad Sci 805, NY Acad Sci New York, pp 259–268Google Scholar
  17. 17.
    Tang H, Sun L, Xin Z, Ganea D, (1996) Down regulation of cytokine expression in murine lymphocytes by PACAP and VIP. In: Arimura A, Said SI (eds.) VIP, PACAP and related peptides. Ann NY Acad Sci 805, NY Acad Sci New York, pp 768–778Google Scholar
  18. 18.
    Macdonald JA, Montgomery JC, Wells RMG (1988) The physiology of Mcmurdo Sound fishes: current New Zealand research. Comp Biochem Physiol 90 B:567–578Google Scholar
  19. 19.
    Eastman JT (1993) Antarctic fish biology. Evolution in a unique environment. Academic Press, San DiegoGoogle Scholar
  20. 20.
    Korovina VM, Prirodina VP (1986) Anatomical-histological features of the intestine of the sculpin spinecheek Cottoperca gobio (Bovichthyidae, Notothenioidei). J Ichthyol 26:130–136Google Scholar
  21. 21.
    Korovina VM, Neyelov AV, Bondarenko YP, (1991) Intestinal anatomy and histology of the marbled notothenia Notothenia rossi marmorata. J Ichthyol 3:79–90Google Scholar
  22. 22.
    Eastman JT, DeVries AL (1997) Morphology of the digestive system of Antartic nototheniid fishes. Polar Biol 17:1–13CrossRefGoogle Scholar
  23. 23.
    Tagliafierro G, Faraldi G, Delù M, Morescalchi MA (1995) Gut regulatory peptides in some Antarctic notothenioids. Polar Biol 15:429–435CrossRefGoogle Scholar
  24. 24.
    Tagliafierro G, Carlini M, Delù M, Faraldi G. (1996) Organizzazione del pancreas endocrino in alcuni pesci antartici. Abstracts 57° Congresso Unione Zoologica Italiana, S. Benedetto del Tronto, September 1996Google Scholar
  25. 25.
    Tagliafierro G, Faraldi G, Morescalchi A (1996) GEP neuroendocrine system in fishes: distribution and ontogeny. Regul Peptides 64:186Google Scholar
  26. 26.
    Tagliafierro G, Carlini M, Faraldi G, Gallus L (1997) The neuroendocrine system in the gut and pancreas of Antarctic fish. Abstracts, Final Conference Network “Fishes of the Antarctic Ocean” Pontignano, Siena, ItalyGoogle Scholar
  27. 27.
    Nilsson S, Holmgren S (1993) Autonomic nerve functions. In: Evans DH (ed) The physiology of fishes. CRC Press Inc, Boca Raton, London, pp 279–313Google Scholar
  28. 28.
    Jonsson AC, Holmgren S, Holstein B (1987) Gastrin/CCK-like immunoreactivity in endocrine cells and nerves in the gastrointestinal tract of the cod, Gadus morhua, and the effect of peptides of the gastrin/CCK family on cod gastrointestinal smooth muscle. Gen Comp Endocrinol 66:190–202PubMedCrossRefGoogle Scholar
  29. 29.
    Jonsson AC (1991) Regulatory peptides in the pancreas of two species of elasmobranchs and in the Brockmann bodies of four teleost species. Cell Tissue Res 266:163–172CrossRefGoogle Scholar
  30. 30.
    Katsoulis S, Schmidt WE (1996) Role of PACAP in the regulation of gastrointestinal motility In: Arimura A, Said SI (eds) VIP, PACAP and related peptides. Ann NY Acad Sci 805, NY Acad Sci New York, pp 364–378Google Scholar
  31. 31.
    Dockray GJ (1994) Vasoactive intestinal polypeptide and related peptides. In: Walsh JH, Dockray GJ (eds) Gut peptides. Raven Press, New York, pp 447–472Google Scholar
  32. 32.
    Larsson LI (1979) Innervation of the pancreas by substance P, enkephalin, vasoactive intestinal polypeptide and gastrin/CCK immunoreactive nerves. J Histochem Cytochem 27: 1283–1284PubMedCrossRefGoogle Scholar
  33. 33.
    Zdzitowiecki K (1997) Diversity of Digenea, parasites of fishes in various areas of the Antarctic. Abstracts, Final Conference Network “Fishes of the Antarctic Ocean” Pontignano, Siena, ItalyGoogle Scholar

Copyright information

© Springer-Verlag Italia 1998

Authors and Affiliations

  • Grazia Tagliafierro
    • 1
  • Marina Carlini
    • 1
  • Gabriella Faraldi
    • 1
  • Lorenzo Gallus
    • 1
  1. 1.Istituto di Anatomia ComparataUniversità di GenovaGenovaItaly

Personalised recommendations