Molecular Adaptation of Microtubules and Microtubule Motors from Antarctic Fish

  • H. William DetrichIII


Temperature, through its effects on the equilibria and kinetics of weak, noncovalent molecular interactions, plays an important role in governing enzyme activity and controlling macromolecular assembly reactions.


Critical Concentration Microtubule Assembly Cold Adaptation Antarctic Fish Molecular Adaptation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Correia JJ, Williams RC Jr (1983) Mechanisms of assembly and disassembly of microtubules. Annu Rev Biophys Bioeng 12:211–235.PubMedCrossRefGoogle Scholar
  2. 2.
    DeWitt HH (1971) Coastal and deep-water benthic fishes of the Antarctic. In: Bushneil VC (ed) Antarctic map folio series, Folio 15. Am Geogr Soc, New York, pp 1–10Google Scholar
  3. 3.
    Detrich HW III, Johnson KA, Marchese-Ragona SP (1989) Polymerization of Antarctic fish tubulins at low temperatures: energetic aspects. Biochemistry 28:10085–10093PubMedCrossRefGoogle Scholar
  4. 4.
    Detrich HW III, Overton SA (1986) Heterogeneity and structure of brain tubulins from cold-adapted Antarctic fishes: comparison to brain tubulins from a temperate fish and a mammal. J Biol Chem 261:10922–10930PubMedGoogle Scholar
  5. 5.
    Detrich HW III (1991) Polymerization of microtubule proteins from Antarctic fish. In: di Prisco G, Maresca B, Tota B (eds) Biology of Antarctic fish. Springer, Berlin Heidelberg New York, pp 248–262CrossRefGoogle Scholar
  6. 6.
    Hirnes RH, Detrich HW III (1989) Dynamics of Antarctic fish microtubules at low temperatures. Biochemistry 28:5089–5095CrossRefGoogle Scholar
  7. 7.
    Gaskin F, Cantor CR, Shelanski ML (1974) Turbidimetric studies of the in vitro assembly and disassembly of porcine neurotubules. J Mol Biol 89:737–758PubMedCrossRefGoogle Scholar
  8. 8.
    Johnson KA, Borisy GG (1975) The equilibrium assembly of microtubules in vitro. In: Inoue’ S, Stephens RE (eds) Molecules and cell movement. Raven, New York, pp 119–139Google Scholar
  9. 9.
    Detrich HW III, Fitzgerald TJ, Dinsmore JH, Marchese-Ragona SP (1992) Brain and egg tubulins from Antarctic fishes are functionally and structurally distinct. J Biol Chem 267:18766–18775PubMedGoogle Scholar
  10. 10.
    Williams RC Jr, Correia JJ, DeVries AL (1985) Formation of microtubules at low temperatures by tubulin from Antarctic fish. Biochemistry 24:2790–2798PubMedCrossRefGoogle Scholar
  11. 11.
    Detrich HW III, Parker SP (1993) Divergent neural ǵb tubulin from the Antarctic fish Notothenia coriiceps neglecta: potential sequence contributions to cold adaptation of microtubule assembly. Cell Motil Cytoskel 24:156–166CrossRefGoogle Scholar
  12. 12.
    Sullivan KF (1988) Structure and utilization of tubulin isotypes. Ann Rev Cell Biol 4:687–716PubMedCrossRefGoogle Scholar
  13. 13.
    Wang D, Villasante A, Lewis SA, Cowan NJ (1986) The mammalian β-tubulin repertoire: hematopoietic expression of a novel, heterologous β-tubulin isotype. J Cell Biol 103:1903–1910PubMedCrossRefGoogle Scholar
  14. 14.
    Monteiro MJ, Cleveland DW (1988) Sequence of chicken cβ7 tubulin: analysis of a complete set of vertebrate β-tubulin isotypes. J Mol Biol 199:439–446PubMedCrossRefGoogle Scholar
  15. 15.
    Detrich HW III, Prasad V, Ludueña RF (1987) Cold-stable microtubules from Antarctic fishes contain unique a tubulins. J Biol Chem 262:8360–8366PubMedGoogle Scholar
  16. 16.
    Singer WD, Parker SK, Hirnes RH, Detrich HW III (1994) Polymerization of Antarctic fish tubulins at low temperatures: role of carboxy-terminal domains. Biochemistry 33:15389–15396PubMedCrossRefGoogle Scholar
  17. 17.
    Alexander JE, Hunt DF, Lee MK, Shabanowitz J, Michel H, Berlin SC, Macdonald TL, Sundberg RJ, Rebhun LI, Frankfurter A (1991) Characterization of posttranslational modifications in neuron-specific class III β-tubulin by mass spectrometry. Proc Natl Acad Sci USA 88:4685–4689PubMedCrossRefGoogle Scholar
  18. 18.
    Carlier M-F (1983) Kinetic evidence for a conformation change of tubulin preceding microtubule assembly. J Biol Chem 258:2415–2420PubMedGoogle Scholar
  19. 19.
    Melki R, Carlier M-F, Pantaloni D, Timasheff SN (1989) Cold depolymerization of microtubules to double rings: geometric stabilization of assemblies. Biochemistry 28:9143–9152PubMedCrossRefGoogle Scholar
  20. 20.
    Shearwin KE, Timasheff SN (1992) Linkage between ligand binding and control of tubulin conformation. Biochemistry 31:8080–8089PubMedCrossRefGoogle Scholar
  21. 21.
    Feller G, Thiry M, Gerday C (1991) Nucleotide sequence of the lipase gene Hp2 from the Antarctic psychrotroph Moraxella TA 144 and site-specific mutagenesis of the conserved serine and histidine residues. DNA Cell Biol 10:381–388PubMedCrossRefGoogle Scholar
  22. 22.
    Fontana A (1991) How nature engineers protein (thermo) stability. In: di Prisco G (ed) Life under extreme conditions. Springer, Berlin Heidelberg New York, pp 89–113CrossRefGoogle Scholar
  23. 23.
    King SM, Marchese-Ragona, SP, Parker, SK, Detrich, HW III (1997) Inner and outer arm axonemal dyneins from the Antarctic rockcod Notothenia coriiceps. Biochemistry 36:1306–1314PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1998

Authors and Affiliations

  • H. William DetrichIII
    • 1
  1. 1.Department of BiologyNortheastern UniversityBostonUSA

Personalised recommendations