Aspects of Eco-Physiological Adaptations in Antarctic Fish

  • Andreas P. A. Wöhrmann


Antarctic marine ectotherms are highly specialized to cold stenothermic conditions. At low temperatures, the rates of molecular diffusion and enzyme reactions can slow down considerably, and in absence of compensating mechanisms, physiological processes in Antarctic ectothermes ought to proceed more slowly than in specimens of temperate or tropical environments [1]. Organisms exhibit a diversity in lipid structures to fashion membranes to prevailing ambient temperatures in such a manner that they become more fluid in a cold-acclimatized state than in a warm-acclimatized state [2].


High Lipid Content Antarctic Fish Brain Ganglioside Notothenioid Fish Gonado Somatic Index 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Somero GN (1990) Life at low volume change: hydrostatic pressure as a selective factor in the aquatic environment. Am Zool 30:123–135Google Scholar
  2. 2.
    Hazel JR (1989) Cold-adaptation in ectothermes: regulation of membrane function and cellular metabolism. In: Wang LCH (ed) Animal adaptation to cold. Springer, Berlin, pp 1–52CrossRefGoogle Scholar
  3. 3.
    Cossins AR (1994) Homeoviscous adaptation of biological membranes and its functional significance. In: Cossins AR (ed) Temperature adaptation of biological membranes. Portland Press, pp 63–75Google Scholar
  4. 4.
    Becker K, Wöhrmann APA, Rahmann H (1995) Brain gangliosides and cold-adaptation in high-Antarctic fish. Biochem System Ecol 23:695–707CrossRefGoogle Scholar
  5. 5.
    Clarke A (1983) Life in cold water: the physiological ecology of polar marine ectotherms. Oceanogr Mar Biol Ann Rev 21:341–453Google Scholar
  6. 6.
    Eastman JT (1993) Antarctic fish biology. Academic Press, San DiegoGoogle Scholar
  7. 7.
    Hubold G (1992) Zur Ökologie der Fische im Weddellmeer. Ber Polarforsch 103:1–157Google Scholar
  8. 8.
    Ekau W (1990) Demersal fish fauna of the Weddell Sea, Antarctica. Antarct Sci 2:129–137CrossRefGoogle Scholar
  9. 9.
    Eastman JT (1985) The evolution of neutrally buoyant notothenioid fishes: their specialisations and potential interactions in the Antarctic marine food web. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin, pp 430–436Google Scholar
  10. 10.
    Shul’man GE (1974) Life cycles of fish. Physiology and biochemistry. John Wiley and Sons, New YorkGoogle Scholar
  11. 11.
    Lund ED, Sidell BD (1992) Neutral lipid compositions of Antarctic fish tissues may reflect use of fatty acyl substrates by catabolic systems. Mar Biol 112:377–382CrossRefGoogle Scholar
  12. 12.
    Sidell BD (1991) Physiological roles of high lipid content in tissues of Antarctic fish species. In: di Prisco G, Maresca B, Tota B (eds) Biology of Antarctic fish. Springer, Berlin, pp 220–232CrossRefGoogle Scholar
  13. 13.
    DeVries AL, Eastman JT (1978) Lipid sacs as a buoyancy adaptation in an Antarctic fish. Nature 271:352–353CrossRefGoogle Scholar
  14. 14.
    Eastman JT, DeVries AL (1989) Ultrastructure of the lipid sac wall in the Antarctic notothenioid fish Pleuragramma antarcticum. Polar Biol 9:333–335CrossRefGoogle Scholar
  15. 15.
    Clarke A, Doherty N, DeVries AL, Eastman JT (1984) Lipid content and composition of three species of Antarctic fish in relation to buoyancy. Polar Biol 3:77–83CrossRefGoogle Scholar
  16. 16.
    Wöhrmann APA, Hagen W, Kunzmann A (1997) Adaptations of Pleuragramma antarcticum (Pisces: Nototheniidae) to pelagic life in high-Antarctic waters. Mar Ecol Progr Ser 151:205–218CrossRefGoogle Scholar
  17. 17.
    Eastman JT, Grande L (1989) Evolution of the Antarctic fish fauna with emphasis on the recent notothenioids. In: Crame JA (ed) Origins and evolution of the Antarctic biota. Special Publications of the Geological Society, No 47, London, pp 241–252Google Scholar
  18. 18.
    Rahmann H, Hilbig R (1983) Phylogenetic aspects of brain gangliosides in vertebrates. J Comp Physiol B 151:215–224CrossRefGoogle Scholar
  19. 19.
    Hayashi K, Mühleisen M, Probst W, Rahmann H (1984) Binding of Ca2+ to phosphoinositols, phosphatidylserines and gangliosides. Chem Phys Lipids 34:317–322PubMedCrossRefGoogle Scholar
  20. 20.
    Rahmann H (1992) Calcium-ganglioside interaction and modulation of neuronal functions. In: Osborne NN (ed) Current aspects of the neurosciences. Macmillan Press, London, pp 87–125Google Scholar
  21. 21.
    Wöhrmann APA (1996) Antifreeze glycopeptides and peptides in Antarctic fish species from the Weddell Sea and the Lazarev Sea. Mar Ecol Progr Ser 130:47–59CrossRefGoogle Scholar
  22. 22.
    Lewis EL, Perkin RG (1985) The winter oceanography of McMurdo Sound, Antarctica. In: Jacobs SS (ed) Antarctic Research Series, Vol 43, Oceanology of the Antarctic continental shelf. American Geophysical Union, Washington, pp 145–165CrossRefGoogle Scholar
  23. 23.
    DeVries AL (1988) The role of antifreeze glycopeptides in the freezing avoidance of Antarctic fishes. Comp Biochem Physiol B 90:611–621CrossRefGoogle Scholar
  24. 24.
    Wöhrmann APA (1997) Freezing resistance in Antarctic and Arctic fishes: its relation to mode of life, ecology and evolution. Cybium 21(4): 423–442Google Scholar

Copyright information

© Springer-Verlag Italia 1998

Authors and Affiliations

  • Andreas P. A. Wöhrmann
    • 1
  1. 1.Institut für PolarökologieUniversity of KielKielGermany

Personalised recommendations