A Comparison of Adaptive Radiations of Antarctic Fish with those of NonAntarctic Fish

  • Joseph T. Eastman
  • Andrew Clarke


Antarctic biologists frequently emphasize the differences between the modern Antarctic environment and its fauna, and aquatic habitats and faunas elsewhere in the world. While it is valid to portray Antarctica as remote and its fauna as endemic and cold adapted, this approach tends to obscure broad scale similarities between Antarctic and non-Antarctic faunas. For example, the Antarctic fish fauna shares an evolutionary response to its habitat with fish in some tropical, temperate and boreal lakes. In this review we compare some well studied lacustrine radiations of fish with the two radiations of marine fish in the Antarctic Region of the Southern Ocean, notothenioids and liparids. We shall first make the case that, unlike other marine habitats, the Antarctic Region fulfills most of the essential parameters of lakes containing radiations of fish and that this large component of the world ocean is equivalent to a closed basin. Therefore in spite of its vastness, the Antarctic Region provides a comparable opportunity for studying evolutionary biology within a confined area. It is likely that notothenioids, and possibly liparids, are the first known examples of species flocks or radiations of marine fish. Thus the high Antarctic shelf and upper slope is an insular evolutionary site, with endemic faunas equally as interesting, but less well known, as those in ancient lakes throughout the world.


Southern Ocean Fish Fauna Adaptive Radiation Antarctic Region Antarctic Fish 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eastman JT (1993) Antarctic fish biology: evolution in a unique environment. Academic Press, San DiegoGoogle Scholar
  2. 2.
    Clarke A, Johnston IA (1996) Evolution and adaptive radiation of Antarctic fishes. Trends Ecol Evol 11:212–218PubMedCrossRefGoogle Scholar
  3. 3.
    Klingenberg CP, Ekau W (1996) A combined morphometric and phylogenetic analysis of an ecomorphological trend: pelagization in Antarctic fishes (Perciformes: Nototheniidae). Biol J Linn Soc 59:143–177CrossRefGoogle Scholar
  4. 4.
    Andriashev AP, Stein DL (1998) Review of the snailfish genus Careproctus (Liparidae, Scorpaeniformes) in the Antarctic. Contrib Sci Nat Hist Mus Los Angeles Co (in press)Google Scholar
  5. 5.
    Clarke A, Crame JA (1989) The origin of the Southern Ocean marine fauna. In: Crame JA (ed) Origins and evolution of the Antarctic biota. Geological Society Special Publication No. 47. The Geological Society, London, pp 253–268Google Scholar
  6. 6.
    Clarke A, Crame JA (1992) The Southern Ocean benthic fauna and climate change: an historical perspective. Phil Trans Roy Soc Lond B 338: 299–309CrossRefGoogle Scholar
  7. 7.
    Iwami T (1985) Osteology and relationship of the family Channichthyidae. Mem Nat Inst Polar Res E(36): 1–69Google Scholar
  8. 8.
    Bargelloni L, Ritchie PA, Patarnello T, Battaglia B, Lambert DM, Meyer A (1994) Molecular evolution at subzero temperatures: mitochondrial and nuclear phylogenies of fishes from Antarctica (suborder Notothenioidei), and the evolution of antifreeze glycopeptides. Mol Biol Evol 11:854–863PubMedGoogle Scholar
  9. 9.
    Ritchie PA, Bargelloni L, Meyer A, Taylor JA, Macdonald JA, Lambert DM (1996) Mitochondrial phylogeny of trematomid fishes (Nototheniidae, Perciformes) and the evolution of Antarctic fish. Mol Phylogen Evol 5:383–390CrossRefGoogle Scholar
  10. 10.
    Brooks JL (1950) Speciation in ancient lakes. Quart Rev Biol 25:30–60, 131–176CrossRefGoogle Scholar
  11. 11.
    Kozhov M (1963) Lake Baikal and its life. Junk, The HagueCrossRefGoogle Scholar
  12. 12.
    Fryer G, Iles TD (1972) The cichlid fishes of the Great Lakes of Africa. TFH Publications, Neptune City, NJGoogle Scholar
  13. 13.
    Echelle AA, Kornfield I (eds) (1984) Evolution of fish species flocks. University of Maine at Orono Press, OronoGoogle Scholar
  14. 14.
    Coulter GW (ed) (1991) Lake Tanganyika and its life. Oxford University Press, OxfordGoogle Scholar
  15. 15.
    Martens K, Coulter G, Goddeeris B (1994) Speciation in ancient lakes-40 years after Brooks. Arch Hydrobiol Beih Ergebn Limnol 44:75–96Google Scholar
  16. 16.
    Martens K (1997) Speciation in ancient lakes. Trends Ecol Evol 12: 177–182PubMedCrossRefGoogle Scholar
  17. 17.
    Greenwood PH (1984) African cichlids and evolutionary theories. In: Echelle AA, Kornfield I (eds) Evolution of fish species flocks. University of Maine at Orono Press, Orono, pp 141–154Google Scholar
  18. 18.
    Ribbink AJ (1984) Is the species flock concept tenable? In: Echelle AA, Kornfield I (eds) Evolution of fish species flocks. University of Maine at Orono Press, Orono, pp 21–25Google Scholar
  19. 19.
    Gon O, Heemstra PC (eds) (1990). Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, South AfricaGoogle Scholar
  20. 20.
    Andriashev AP (1987) A general review of the Antarctic bottom fish fauna. In: Kuliander SO, Fernholm B (eds) Fifth congress of European ichthyologists, proceedings, Stockholm, 1985. Swedish Museum of Natural History, Stockholm, pp 357–372Google Scholar
  21. 21.
    Nelson JS (1994) Fishes of the world (3rd ed). John Wiley & Sons, New YorkGoogle Scholar
  22. 22.
    Balushkin AV (1990) Review of blue notothenias of the genus Paranotothenia Balushkin (Nototheniidae) with description of a new species. J Ichthyol 30(6):132–147Google Scholar
  23. 23.
    Balushkin AV (1991) Review of green notothenias, Gobionotothen, Balushkin (Nototheniidae) of the Antarctic and SubAntarctic. J Ichthyol 31(8):42–55Google Scholar
  24. 24.
    Anderson ME (1994) Systematics and osteology of the Zoarcidae (Teleostei: Perciformes). Ichthyol Bull JLB Smith Inst Ichthyol No. 60:1–120Google Scholar
  25. 25.
    Balushkin AV (1992) Classification, phylogenetic relationships, and origins of the families of the suborder Notothenioidei (Perciformes). J Ichthyol 32(7):90–110Google Scholar
  26. 26.
    DeWitt HH (1971) Coastal and deep-water benthic fishes of the Antarctic. In: Bushneil VC (ed) Antarctic map folio series, folio 15. American Geographical Society, New York, pp 1–10Google Scholar
  27. 27.
    Ekau W (1990) Demersal fish fauna of the Weddell Sea, Antarctica. Antarct Sci 2:129–137CrossRefGoogle Scholar
  28. 28.
    Hubold G (1991) Ecology of notothenioid fish in the Weddell Sea. In: di Prisco G, Maresca B, Tota B (eds) Biology of Antarctic fish. Springer-Verlag, Berlin, pp 3–22CrossRefGoogle Scholar
  29. 29.
    Brooks DR, McLennan DA (1991) Phylogeny, ecology, and behavior: a research program in comparative biology. University of Chicago Press, ChicagoGoogle Scholar
  30. 30.
    Mayden RL (1992) An emerging revolution in comparative biology and the evolution of North American freshwater fishes. In: Mayden RL (ed) Systematics, historical ecology, and North American freshwater fishes. Stanford University Press, Stanford, California, pp 864–890Google Scholar
  31. 31.
    Stein DL, Meléndez CR, Kong UI (1991) A review of Chilean snailfishes (Liparididae, Scorpaeniformes) with descriptions of a new genus and three new species. Copeia 1991(2):358–373CrossRefGoogle Scholar
  32. 32.
    Stein DL, Andriashev AP (1990) Liparididae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, South Africa, pp 231–255Google Scholar
  33. 33.
    Andriashev AP (1986) Review of the snailfish genus Paraliparis (Scorpaeniformes: Liparididae) of the Southern Ocean. Theses zoologicae, vol. 7, Koeltz Scientific Books, KoenigsteinGoogle Scholar
  34. 34.
    Andriashev AP (1991) Possible pathways of Paraliparis (Pisces: Liparididae) and some other North Pacific secondarily deep-sea fishes into North Atlantic and Arctic depths. Polar Biol 11:213–218CrossRefGoogle Scholar
  35. 35.
    Andriashev AP, Prirodina VP (1990) A review of Antarctic species of the genus Careproctus (Liparididae) and notes on the carcinophilic species of this genus. J Ichthyol 30(6):63–76Google Scholar
  36. 36.
    Kido K (1988) Phylogeny of the family Liparididae, with the taxonomy of the species found around Japan. Mem Fac Fish Hokkaido Univ 35:125–256Google Scholar
  37. 37.
    Eastman JT, Hikida RS, DeVries AL (1994) Buoyancy studies and microscopy of skin and subdermal extracellular matrix of the Antarctic snailfish, Paraliparis devriesi. J Morphol 220:85–101CrossRefGoogle Scholar
  38. 38.
    Jung A, Johnson P, Eastman JT, DeVries AL (1995). Protein content and freezing avoidance properties of the subdermal extracellular matrix and serum of the Antarctic snailfish, Paraliparis devriesi. Fish Physiol Biochem 14:71–80CrossRefGoogle Scholar
  39. 39.
    Jell PA (1974) Faunal provinces and possible planetary reconstruction of the Middle Cambrian. J Geol 82: 319–350CrossRefGoogle Scholar
  40. 40.
    Hallam, A (1994) An outline of Phanerozoic biogeography. Oxford University Press, 246 ppGoogle Scholar
  41. 41.
    Enay R (1973) Upper Jurassic (Tithonian) ammonites. In: Hallam A (ed) Atlas of palaeobiogeography. Elsevier, Amsterdam, pp 297–307Google Scholar
  42. 42.
    Mutterlose J (1986) Upper Jurassic belemnites from the Orville Coast, Western Antarctica, and their palaeobiological significance. Bull Br Antarct Surv 70:1–22Google Scholar
  43. 43.
    Hallam A, Perez E, Biro L (1986) Facies analysis of the Lo Valdes Formation (Tithonian-Hauterivian) of the High Cordillera of central Chile and the palaeogeographic evolution of the Andean Basin. Geol Mag 123: 425–435CrossRefGoogle Scholar
  44. 44.
    Riccardi AC (1991) Jurassic and Cretaceous marine connections between the Southeast Pacific and Tethys. Palaeogeog Palaeoclim Palaeoecol 87:155–189CrossRefGoogle Scholar
  45. 45.
    Barker PF, Burrell J (1977) The opening of Drake Passage. Mar Geol 25:15–34CrossRefGoogle Scholar
  46. 46.
    Barrett PJ (1997) Antarctic paleoenvironment through Cenozoic times — a review. Proceedings of the VII Antarctic Earth Sciences Symposium, Siena, August 1995 (In press)Google Scholar
  47. 47.
    Eastman JT, Grande L (1991) Late Eocene gadiform (Teleostei) skull from Seymour Island, Antarctic Peninsula. Antarct Sci 3:87–95CrossRefGoogle Scholar
  48. 48.
    Balushkin AV (1994) Proeleginops grandeastmanorum gen. et sp. nov. (Perciformes, Notothenioidei, Eleginopsidae) from the Late Eocene of Seymour Island (Antarctica) is a fossil notothenioid, not a gadiform. J Ichthyol 34(8): 10–23Google Scholar
  49. 49.
    Hambrey MJ, Barrett P (1993) Cenozoic sedimentary and climate record, Ross Sea region, Antarctica. In: Kennett JP, Warnke DA (eds) The Antarctic paleoenvironment: a perspective on global change. Part Two. Antarctic Research Series, 60. American Geophysical Union, Washington, pp 91–124CrossRefGoogle Scholar
  50. 50.
    Brey T, Dahm C, Gorny M, Klages M, Stiller M, Arntz WE (1996) Do Antarctic benthic invertebrates show an extended level of eurybathy? Ant Sci 8:3–6CrossRefGoogle Scholar
  51. 51.
    Burckle LH, Stroeven AP, Bronge C, Miller U, Wasell A (1996) Deficiencies in the diatom evidence for a Pliocene reduction of the East Antarctic ice sheet. Paleoceanography 11:379–389CrossRefGoogle Scholar
  52. 52.
    Dingle RV, McArthur JM, Vroon P (1997) Oligocene and Pliocene interglacial events in the Antarctic Peninsula dated using strontium isotope stratigraphy. J Geol Soc, Lond 154:257–264CrossRefGoogle Scholar
  53. 53.
    Berger A (1988) Milankovitch theory and climate. Rev Geophys 26: 624–657CrossRefGoogle Scholar
  54. 54.
    Clemens SC, Tiedemann R (1997) Eccentricity forcing of Pliocene — Early Pleistocene climate revealed in a marine oxygen-isotope record. Nature 385:801–804CrossRefGoogle Scholar
  55. 55.
    Herbert TD, Fischer AG (1986) Milankovitch climatic origin of mid-Cretaceous black shale rhythms in central Italy. Nature 321:739–743CrossRefGoogle Scholar
  56. 56.
    Valentine JW (1968) Climatic regulation of species diversification and extinction. Geol Soc Amer Bull 79:273–276CrossRefGoogle Scholar
  57. 57.
    Crame JA (1993) Latitudinal range fluctuations in the marine realm through geological time. Trends Ecol Evol 8:162–166CrossRefGoogle Scholar
  58. 58.
    Clarke A, Crame JA (in press) Diversity, latitude and time: patterns in the shallow sea. In: Ormond RFG, Gage J and Angel MV (eds) Marine biodiversity: patterns and processes. Cambridge University Press, pp 122–147Google Scholar
  59. 59.
    Dansgaard W, Johnsen SJ, Clansen HB, Dahl-Jensen D, Gundestrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjørnsdottir AE, Jouzel J, Bond G (1993) Evidence for general instability of climate from a 250-kyr ice-core record. Nature 364:218–20CrossRefGoogle Scholar
  60. 60.
    Taylor KC, Lamerey GW, Doyle GA, Alley RB, Grootes PM, Mayewski PA, White JWC, Barlow LK (1993) The ‘flickering switch’ of late Pleistocene climate change. Nature 361:432–436CrossRefGoogle Scholar
  61. 61.
    Coope GR (1979) Late Cenozoic fossil Coleoptera: evolution, biogeography and ecology. Ann Rev Ecol Syst 10:247–267CrossRefGoogle Scholar
  62. 62.
    Elias SA (1994) Quaternary insects and their environment. Smithsonian Institution Press, WashingtonGoogle Scholar
  63. 63.
    Kennett JP, Stott LD (1991) Abrupt deep-sea warming, palaeoceanographic changes and benthic extinction at the end of the Palaeocene. Nature 353:225–229CrossRefGoogle Scholar
  64. 64.
    Kennett JP (1982) Marine geology. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  65. 65.
    Lecointre G, Bonillo C, Ozouf-Costaz C, Hureau J-C (1997) Molecular evidence for the origins of Antarctic fishes: paraphyly of the Bovichtidae and no indication for the monophyly of the Notothenioidei (Teleostei). Polar Biol 18:193–208CrossRefGoogle Scholar
  66. 66.
    McDonald MA, Smith MH, Smith MW, Novak JM, Johns PE, DeVries AL (1992) Biochemical systematics of notothenioid fishes from Antarctica. Biochem Syst Ecol 20:233–241CrossRefGoogle Scholar
  67. 67.
    Chen L, DeVries AL, Cheng C-HC (1997) Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc Natl Acad Sci USA 94:3811–3816PubMedCrossRefGoogle Scholar
  68. 68.
    Greenwood PH (1994) Lake Victoria. Arch Hydrobiol Beih Ergebn Limnol 44:19–26Google Scholar
  69. 69.
    Johnson TC, Odada EO (eds) (1996) The limnology, climatology and paleoclimatology of the East African lakes. Overseas Publishers Association, AmsterdamGoogle Scholar
  70. 70.
    Lowe-McConnell R (1996) Fish communities in the African Great Lakes. Env Biol Fish 45:219–235CrossRefGoogle Scholar
  71. 71.
    Meyer A, Montero CM, Spreinat A (1996) Molecular phylogenetic inferences about the evolutionary history of East African cichlid fish radiations. In: Johnson TC, Odada EO (eds) The limnology, climatology and paleoclimatology of the East African lakes. Overseas Publishers Association, Amsterdam, pp 303–323Google Scholar
  72. 72.
    Liem KF (1973) Evolutionary strategies and morphological innovations: cichlid pharyngeal jaws. Syst Zool 22:425–441CrossRefGoogle Scholar
  73. 73.
    Liem KF (1991) Functional morphology. In: Keenleyside MHA (ed) Cichlid fishes: behaviour, ecology and evolution. Chapman & Hall, London, pp 129–150Google Scholar
  74. 74.
    Owen RB et al (1990) Major low levels of Lake Malawi and their implications for speciation rates in cichlid fishes. Proc R Soc Lond B 240:519–553CrossRefGoogle Scholar
  75. 75.
    Johnson TC et al (1996) Late Pleistocene desiccation of Lake Victoria and rapid evolution of cichlid fishes. Science 273:1091–1093PubMedCrossRefGoogle Scholar
  76. 76.
    Martin P (1994) Lake Baikal. Arch Hydrobiol Beih Ergebn Limnol 44:3–11Google Scholar
  77. 77.
    Sideleva VG (1994) Speciation of endemic Cottoidei in Lake Baikal. Arch Hydrobiol Beih Ergebn Limnol 44:441–450Google Scholar
  78. 78.
    Sideleva VG (1996) Comparative character of the deep-water and inshore cottoid fishes endemic to Lake Baikal. J Fish Biol 49(Suppl. A): 192–206CrossRefGoogle Scholar
  79. 79.
    Grachev MA et al (1992) Comparative study of two protein-coding regions of mitochondrial DNA from three endemic sculpins (Cottoidei) of Lake Baikal. J Mol Evol 34:85–90PubMedCrossRefGoogle Scholar
  80. 80.
    Smith GR, Todd TN (1984) Evolution of species flocks of fishes in north temperate lakes. In: Echelle AA, Kornfield I (eds) Evolution of fish species flocks. University of Maine at Orono Press, Orono, pp 45–68Google Scholar
  81. 81.
    Pankhurst NW, Sideleva VG, Pankhurst PM, Smirnova O, Janssen J (1994) Ocular morphology of the Baikal sculpin-oilfishes, Comephorus baicalensis and C. dybowskii (Comephoridae). Env Biol Fish 39:51–58CrossRefGoogle Scholar
  82. 82.
    Smirnova OG (1995) Retinal structure of Baikal oilfishes of the endemic family Comephoridae. J Ichthyol 35(1): 139–145Google Scholar
  83. 83.
    Chen L, DeVries AL, Cheng C-HC (1997) Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. Proc Nat Acad Sci USA 94:3817–3822PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1998

Authors and Affiliations

  • Joseph T. Eastman
    • 1
  • Andrew Clarke
    • 2
  1. 1.Department of Biological SciencesOhio UniversityAthensUSA
  2. 2.British Antarctic SurveyCambridgeUK

Personalised recommendations