Problems with Conventional Magnetic Resonance Imaging and New Strategies to Improve the Utility of MRI in Future Clinical Trials

  • R. I. Grossman
Conference paper
Part of the Topics in Neuroscience book series (TOPNEURO)


Although magnetic resonance imaging (MRI) is the best imaging technique available for the detection of multiple sclerosis (MS) lesions it is by no means perfect. The problems with the conventional magnetic resonance (MR) methodology related to MS include: (1) lack of specificity with respect to lesion histopathology; (2) inability to detect the full extent of individual lesions; (3) failure to detect microscopic lesions beyond the resolving power of conventional MRI pulse sequences; and (4) poor correlation of lesion quantification and clinical measures especially in progressive disease. Solutions to these complex problems are quite important if MRI is to truly attain a role as a marker of disease progression and as an arbiter of treatment efficacy in MS.


Multiple Sclerosis Expand Disability Status Scale Magn Reson Image Magnetization Transfer Conventional Magnetic Resonance Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nesbit GM, Forbes GS, Scheithauer BW, et al. (1991) Multiple sclerosis: Histopathologic and MR and/or CT correlation in 37 cases at biopsy and three cases at autopsy. Radiology 180: 467–474PubMedCrossRefGoogle Scholar
  2. 2.
    Paty DW, Li DKB, the UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group. Neurology 43: 662–667PubMedCrossRefGoogle Scholar
  3. 3.
    Miki Y, Grossman RI, Udupa JK, et al. (1998) Longitudinal analysis of T2-lesion volume in relapsing-remitting multiple sclerosis (submitted)Google Scholar
  4. 4.
    Thompson AJ, Kermode AG, MacManus DG, et al. (1990) Patterns of disease activity in multiple sclerosis: Clinical and magnetic resonance imaging study. BMJ 300: 631–634PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Thompson AJ, Kermode AG, Wicks D, et al. (1991) Major differences in the dynamics of primary and secondary progressive multiple sclerosis. Ann Neurol 29: 53–62PubMedCrossRefGoogle Scholar
  6. 6.
    Trapp BD, Peterson J, Ransohoff RM, et al. (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338: 278–285PubMedCrossRefGoogle Scholar
  7. 7.
    Kirpatrick LL, Brady ST (1994) Modulation of the axonal microtuble cytoskeleton by myelinating Schwann cells. J Neurosci 14: 7440–7450Google Scholar
  8. 8.
    Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120: 393–399PubMedCrossRefGoogle Scholar
  9. 9.
    Raine CS, Cross AH (1989) Axonal dystrophy as a consequence of long-term demyelination. Lab Invest 60: 714–725PubMedGoogle Scholar
  10. 10.
    McDonald WI, Miller DH, Barnes D (1992) The pathological evolution of multiple sclerosis. Neuropathol Appl Neurobiol 18: 319–334PubMedCrossRefGoogle Scholar
  11. 11.
    Miller DH, Newton MR, van der Poel JC, et al. (1988) Magnetic resonance imaging of the optic nerve in optic neuritis. Neurology 38: 175–179PubMedCrossRefGoogle Scholar
  12. 12.
    Youl B, Turano G, Miller DH, et al. (1991) The pathophysiology of acute optic neuritis. An association of gadolinium leakage with clinical and electrophysiological deficits. Brain 114: 2437–2450PubMedCrossRefGoogle Scholar
  13. 13.
    Jones J, Dichtl A (1996) Evaluation of the retinal nerve layer. Surv Ophthalmol 40: 369–378CrossRefGoogle Scholar
  14. 14.
    Youl B, Turano A, Towell A, et al. (1996) Optic neuritis: Swelling and atrophy. Electroencephalogr Clin Neurophysiol 46(Suppl): 173–179Google Scholar
  15. 15.
    Kidd D, Thorpe JW, Thompson AJ, et al. (1993) Spinal cord MRI using multi-array coils and fast spin echo. II. Findings in multiple sclerosis. Neurology 43: 2632–2637PubMedCrossRefGoogle Scholar
  16. 16.
    Kidd D, Thorpe JW, Kendall BE, et al. (1996) MRI dynamics of brain and spinal cord in progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 60: 15–29PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    van Walderveen MA, Barkhof F, Hommes OR, et al. (1995) Correlating MRI and clinical disease activity in multiple sclerosis: relevance of hypointense lesions on short-TR/short-TE (T1weighted) spin-echo images. Neurology 45 :1684–1690PubMedCrossRefGoogle Scholar
  18. 18.
    van Walderveen M, Kamphorst W, Scheltens P, et al. (1998) Histopathologic correlate of hypointense lesions on T1-weighted SE magnetic resonance images in multiple sclerosis. Neurology 50: 1282–1288PubMedCrossRefGoogle Scholar
  19. 19.
    Truyen L, van Waesberghe JH, van Walderveen MA, et al. (1996) Accumulation of hypointense lesions (“black holes”) on T1 spin-echo MRI correlates with disease progression in multiple sclerosis. Neurology 47: 1469–1476PubMedCrossRefGoogle Scholar
  20. 20.
    Davie CA, Barker GJ, Webb S, et al. (1995) Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss. Brain 118:1583–1592PubMedCrossRefGoogle Scholar
  21. 21.
    Matthews PM, Pioro E, Narayanan S, et al. (1996) Assessment of lesion pathology in multiple sclerosis using quantitative MRI morphometry and magnetic resonance spectroscopy. Brain 119: 715–722PubMedCrossRefGoogle Scholar
  22. 22.
    Willoughby EW, Grochowski E, Li DKB, et al. (1989) Serial magnetic resonance scanning in multiple sclerosis: A second prospective study in relapsing patients. Ann Neurol 25: 43–49PubMedCrossRefGoogle Scholar
  23. 23.
    Koopmans RA, Li DKB, Grochowski E, et al. (1989) Benign versus chronic progressive multiple sclerosis: Magnetic resonance imaging features. Ann Neurol 25: 74–81PubMedCrossRefGoogle Scholar
  24. 24.
    Baumhefner RW, Tourtellotte WW, Syndulko K, et al. (1990) Quantitative multiple sclerosis plaque assessment with magnetic resonance imaging. Its correlation with clinical parameters, evoked potentials, and intra-blood-brain barrier IgG synthesis. Arch Neurol 47:19–26PubMedCrossRefGoogle Scholar
  25. 25.
    Thompson AJ, Miller D, Youl B, et al. (1992) Serial gadolinium-enhanced MRI in relapsing/remitting multiple sclerosis of varying disease duration. Neurology 42: 60–63PubMedCrossRefGoogle Scholar
  26. 26.
    Miller DH, Rudge P, Johnson G, et al. (1988) Serial gadolinium enhanced magnetic resonance imaging in multiple sclerosis. Brain 112: 1057–1090Google Scholar
  27. 27.
    Isaac C, Li DKB, Genton M, et al. (1988) Multiple sclerosis: A serial study using MRI in relapsing patients. Neurology 38: 1511–1515PubMedCrossRefGoogle Scholar
  28. 28.
    Kermode AG, Thompson AJ, Tofts P, et al. (1990) Breakdown of the blood-brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis. Pathogenetic and clinical implications. Brain 113:1477–1489PubMedCrossRefGoogle Scholar
  29. 29.
    Harris JO, Frank JA, Patronas N, et al. (1991) Serial gadolinium-enhanced magnetic resonance imaging scans in patients with early, relapsing-remitting multiple sclerosis: Implications for clinical trials and natural history. Ann Neurol 29: 548–555PubMedCrossRefGoogle Scholar
  30. 30.
    Filippi M, Horsfield MA, Morrissey SP, et al. (1994) Quantitative brain MRI lesion load predicts the course of clinically isolated syndromes suggestive of multiple sclerosis. Neurology 44: 635–641PubMedCrossRefGoogle Scholar
  31. 31.
    Paty DW (1987) Multiple sclerosis: Assessment of disease progression and effects of treatment. Can J Neurol Sci 14 (3 Suppl): 518–520PubMedGoogle Scholar
  32. 32.
    Rao SM, Leo GJ, Haughton VM, et al. (1989) Correlation of magnetic resonance imaging with neuropsychological testing in multiple sclerosis. Neurology 39 (2 part 1): 161–166PubMedCrossRefGoogle Scholar
  33. 33.
    Anzola GP, Bevilacqua L, Cappa SF, et al. (1990) Neuropsychological assessment in patients with relapsing-remitting multiple sclerosis and mild functional impairment: Correlation with magnetic resonance imaging. J Neurol Neurosurg Psychiatry 53: 142–145PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Swirsky S, Mitchell DR, Seward J, et al. (1992) Neuropsychological and structural brain lesions in multiple sclerosis: A regional analysis. Neurology 42:1291–1295CrossRefGoogle Scholar
  35. 35.
    Grossman M, Armstrong C, Onishi K, et al. (1994) Patterns of cognitive impairment in relapsing-remitting and chronic progressive multiple sclerosis. Neuropsychiatr Neuropsychol Behav Neurol 7: 194–210Google Scholar
  36. 36.
    Huber SJ, Paulson GW, Shuttleworth EC, et al. (1987) Magnetic resonance imaging correlates of dementia in multiple sclerosis. Arch Neurol 44: 732–736PubMedCrossRefGoogle Scholar
  37. 37.
    Dousset V, Grossman RI, Ramer KN, et al. (1992) Experimental allergic encephalomyelitis and multiple sclerosis: Lesion characterization with magnetization transfer imaging. Radiology 182: 483–491PubMedCrossRefGoogle Scholar
  38. 38.
    Husted CA, Goodin DS, Hugg JW, et al. (1994) Biochemical alterations in multiple sclerosis lesions and normal-appearing white matter detected by in vivo 3IP and 1H spectroscopic imaging. Ann Neurol 36:157–165CrossRefGoogle Scholar
  39. 39.
    Filippi M, Campi A, Dousset V, et al. (1995) A magnetization transfer imaging study of normal-appearing white matter in multiple sclerosis. Neurology 45: 478–482PubMedCrossRefGoogle Scholar
  40. 40.
    Barbosa S, Blumhardt LD, Roberts N, et al. (1994) Magnetic resonance relaxation time mapping in multiple sclerosis: Normal appearing white matter and the invisible lesion load. Magn Reson Imaging 12: 33–42PubMedCrossRefGoogle Scholar
  41. 41.
    Noseworthy JH, Van der Voort M, Wong C, Ebers G (1990) Interrater variability with the expanded disability status scale (EDSS) and functional systems (FS) in a multiple sclerosis clinical trial. Neurology 40 : 971–975PubMedCrossRefGoogle Scholar
  42. 42.
    Goodkin D, Cookfair D, Wende K, et al. (1992) Inter-and intrarater scoring agreement using grades 1.0 to 3.5 of the Kurtzke expanded disability status scale (EDSS). Neurology 42: 859–863PubMedCrossRefGoogle Scholar
  43. 43.
    Wiloughby E, Paty D (1988) Scales for rating impairment in multiple sclerosis: A critique. Neurology 38: 1793–1798CrossRefGoogle Scholar
  44. 44.
    Grossman RI, Gonzales-Scarano F, Atlas SW, et al. (1986) Multiple sclerosis: Gadolinium enhancement in MR imaging. Radiology 161: 721–725PubMedCrossRefGoogle Scholar
  45. 45.
    Miller DH, Barkhof F, Nauta JJ (1993) Gadolinium enhancement increases the sensitivity of MRI in detecting disease activity in multiple sclerosis. Brain 116:1077–1094PubMedCrossRefGoogle Scholar
  46. 46.
    Smith ME, Stone LA, Albert PS, et al. (1993) Clinical worsening in multiple sclerosis is associated with increased frequency and area of gadopentetate dimeglumine-enhancing magnetic resonance imaging lesions. Ann Neurol 33: 480–489PubMedCrossRefGoogle Scholar
  47. 47.
    Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17: 357–367PubMedCrossRefGoogle Scholar
  48. 48.
    Tofts PS, Kermode AG (1989) Blood brain barrier permeability in multiple sclerosis using labelled DTPA with PET, CT and MRI. J Neurol Neurosurg Psychiatry 52: 1019–1020PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Filippi M, Capra R, Campi A, et al. (1996) Triple dose of gadolinium-DTPA and delayed MRI in patients with benign multiple sclerosis. J Neurol Neurosurg Psychiatry 60:526–530PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Kermode AG, Tofts PS, Thompson AJ, et al. (1990) Heterogeneity of blood-brain barrier changes in multiple sclerosis: An MRI study with gadolinium-DTPA enhancement. Neurology 40: 229–235PubMedCrossRefGoogle Scholar
  51. 51.
    Filippi M, Campi A, Martinelli V, et al. (1995) Comparison of triple dose versus standard dose gadolinium-DTPA for detection of MRI enhancing lesions in patients with primary progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 59: 540–544PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Filippi M, Yousry T, Campi A, et al. (1996) Comparison of triple dose versus standard dose gadolinium-DTPA for detection of MRI enhancing lesions in patients with MS. Neurology 46: 379–384PubMedCrossRefGoogle Scholar
  53. 53.
    Silver NC, Good CD, Barker GJ, et al. (1997) Sensitivity of contrast enhanced MRI in multiple sclerosis. Effects of gadolinium dose, magnetization transfer contrast and delayed imaging. Brain 120: 1149–1161Google Scholar
  54. 54.
    Barratt HJ, Miller D, Rudge P (1988) The site of lesion causing deafness in multiple sclerosis. Scand Audiol 17: 67–71PubMedCrossRefGoogle Scholar
  55. 55.
    Haughton VM, Yetkin FZ, Rao SM, et al. (1992) Quantitative MR in the diagnosis of multiple sclerosis. Magn Reson Med 26: 71–78PubMedCrossRefGoogle Scholar
  56. 56.
    Barbosa S, Blumhardt LD, Roberts N, et al. (1994) Magnetic resonance relaxation time mapping in multiple sclerosis: Normal appearing white matter and the “invisible” lesion load. Magn Reson Imaging 12: 33–42PubMedCrossRefGoogle Scholar
  57. 57.
    Loevner LA, Grossman RI, Cohen JA, et al. (1995) Microscopic disease in normal-appearing white matter on conventional MR images in patients with multiple sclerosis: Assessment with magnetization-transfer measurements. Radiology 196: 511–515PubMedCrossRefGoogle Scholar
  58. 58.
    Miki Y, Grossman RI, Udupa JK, et al. (1997) Computer-assisted quantitation of enhancing lesions in multiple sclerosis: Correlation with clinical classification. AJNR Am J Neuroradiol 18: 705–710PubMedGoogle Scholar
  59. 59.
    Dawson JW (1916) The histology of disseminated sclerosis. Trans R Soc Edinburgh 50: 517–740CrossRefGoogle Scholar
  60. 60.
    Zimmerman HN, Netsky MG (1950) The pathology of multiple sclerosis. Proc Assoc Res Nerv Dis 28: 271–312Google Scholar
  61. 61.
    Brownell B, Hughes JT (1962) The distribution of plaques in the cerebrum in multiple sclerosis. J Neurol Neurosurg Psychiatry 25: 315–320PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Barnard RO, Triggs M (1974) Corpus callsosum in multiple sclerosis. J Neurol Neurosurg Psychiatry 37:1259–1264PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Moseley I (1983) Computed tomorgraphy and nuclear magnetic resonance imaging of the brain in multiple sclerosis: A review. Bull Soc Beige Ophtalmol 208: 63–76Google Scholar
  64. 64.
    Quattrini A, Paggi A, Ortenzi A, et al. (1981) CT and EEG investigations in 100 patients with multiple sclerosis (MS). Ital J Neurol Sci 2: 25–34PubMedCrossRefGoogle Scholar
  65. 65.
    Loizou LA, Rolfe EB, Hewazy H (1982) Cranial computed tomography in the diagnosis of multiple sclerosis. J Neurol Neurosurg Psychiatry 45: 905–912PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Jennekens-Schinkel A, Sanders EA (1986) Decline of cognition in multiple sclerosis: Dissociable deficits. J Neurol Neurosurg Psychiatry 49: 1354–1360PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Rao SM, Glatt S, Hammeke TA, et al. (1985) Chronic progressive multiple sclerosis. Relationship between cerebral ventricular size and neuropsychological impairment. Arch Neurol 42: 678–682PubMedCrossRefGoogle Scholar
  68. 68.
    Reisner T, Maida E (1980) Computerized tomography in multiple sclerosis. Arch Neurol 37: 475–477PubMedCrossRefGoogle Scholar
  69. 69.
    Gyldensted C (1976) Computer tomography of the cerebrum in multiple sclerosis. Neuroradiology 12: 33–42CrossRefGoogle Scholar
  70. 70.
    Cala LA, Mastaglia FL, Black JL (1978) Computerized tomography of brain and optic nerve in multiple sclerosis. Observations in 100 patients, including serial studies in 16. J Neurol Sci 36: 411–426PubMedCrossRefGoogle Scholar
  71. 71.
    Hageleit U, Will CH, Seidel D (1987) Automated measurements of cerebral atrophy in multiple sclerosis. Neurosurg Rev 10: 137–140PubMedCrossRefGoogle Scholar
  72. 72.
    Simon JH, Schiffer RB, Rudick RA, Herndon RM (1987) Quantitative determination of MS-induced corpus callosum atrophy in vivo using MR imaging. AJNR Am J Neuroradiol 8:599–604PubMedGoogle Scholar
  73. 73.
    Rao SM, Bernardin L, Leo JG, et al. (1989) Cerebral disconnection in multiple sclerosis. Relationship to atrophy of the corpus callosum. Arch Neurol 46: 918–920PubMedCrossRefGoogle Scholar
  74. 74.
    Tsolaki M, Drevelegas A, Karachristianou S, et al. (1994) Correlation of dementia, neuropsychological and MRI findings in multiple sclerosis. Dementia 5: 48–52PubMedGoogle Scholar
  75. 75.
    Huber SJ, Paulson G, Chakeres D, et al. (1988) Magnetic resonance imaging and clinical correlations in multiple sclerosis. J Neurol Sci 86: 1–12PubMedCrossRefGoogle Scholar
  76. 76.
    Dietemann JL, Beigelman C, Rumbach L, et al. (1988) Multiple sclerosis and corpus callosum atrophy: Relationship of MRI findings to clinical data. Neuroradiology 30: 478–480PubMedCrossRefGoogle Scholar
  77. 77.
    Comi G, Filippi M, Martinelli V, et al. (1993) Brain magnetic resonance imaging correlates of cognitive impairment in multiple sclerosis. J Neurol Sci 115(Suppl): S66–S73PubMedCrossRefGoogle Scholar
  78. 78.
    Damian MS, Schilling G, Bachmann G, et al. (1994) White matter lesions and cognitive deficits: Relevance of lesion pattern? Acta Neurol Scand 90:430–436PubMedCrossRefGoogle Scholar
  79. 79.
    Losseff NA, Wang L, Lai HM, et al. (1996) Progressive cerebral atrophy in multiple sclerosis. A serial MRI study. Brain 119: 2009–2019Google Scholar
  80. 80.
    Losseff NA, Webb SL, O’Riordan JI, et al. (1996) Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain 119: 701–708Google Scholar
  81. 81.
    Bezdek JC, Hall LO, Clarke LP (1993) Review of MR image segmentation techniques using pattern recognition. Med Phys 20: 1033–1048PubMedCrossRefGoogle Scholar
  82. 82.
    Clarke LP,Velthuizen RP, Velthuizen JJ, Camacho MA, et al. (1995) MRI segmentation: Methods and applications. Magn Reson Imaging 13: 343–368PubMedCrossRefGoogle Scholar
  83. 83.
    Lim KO, Pfefferbaum A (1989) Segmentation of MR brain images into cerebrospinal fluid spaces, white and gray matter. J Comp Assist Tomogr 13: 588–593CrossRefGoogle Scholar
  84. 84.
    DeCarli C, Maisog J, Declan GJ, et al. (1992) Method of quantification of brain, ventricular, and subarachnoid CSF volumes from MR images. J Comp Assist Tomogr 16: 274–284CrossRefGoogle Scholar
  85. 85.
    Harris GJ, Barta PE, Peng LW, et al. (1994) MR volume segmentation of gray matter and white matter using manual thresholding: Dependence on image brightness. AJNR Am J Neuroradiol 15: 225–230PubMedGoogle Scholar
  86. 86.
    Tanabe JL, Armend D, Schuff N, et al. (1997) Tissue segmentation of the brain in Alzheimer disease. AJNR Am J Neuroradiol 18: 115–123PubMedGoogle Scholar
  87. 87.
    Rajapakse JC, Giedd JN, DeCarli C, et al. (1996) A technique for single-channel MR brain tissue segmentation: Application to a pediatric sample. Magn Reson Imaging 14: 1053–1065PubMedCrossRefGoogle Scholar
  88. 88.
    Fletcher LM, Barsotti JB, Hornak JP (1993) A multispectral analysis of brain tissues-Magn Reson Med. 29: 623–630CrossRefGoogle Scholar
  89. 89.
    Saeed N, Hajnal JV, Oatridge A (1997) Automated brain segmentation from single slice, multislice or whole-volume MR scans using prior knowledge. J Comp Assist Tomogr 21: 192–201CrossRefGoogle Scholar
  90. 90.
    Hillman GR, Kent TA, Kaye A, et al. (1991) Measurement of brain compartment volumes in MR using voxel composition calculations. J Comp Assist Tomogr 15: 640–646CrossRefGoogle Scholar
  91. 91.
    Cline HE, Loresen WE, Kikinis R, et al. (1990) Three-dimensional segmentation of MR images of the head using probability and connectivity. J Comput Assist Tomogr 14: 1037–1045PubMedCrossRefGoogle Scholar
  92. 92.
    Herndon RC, Lancaster JL, Toga AW, et al. (1996) Quantification of white matter and gray matter volumes from T1 parametric images using fuzzy classifiers. J Magn Reson Imaging 6: 425–435PubMedCrossRefGoogle Scholar
  93. 93.
    Vaidyanathan M, Clarke LP, Heidtman C, et al. (1997) Normal brain volume measurements using multispectral MRI segmentation. J Magn Reson Imaging 15: 87–97CrossRefGoogle Scholar
  94. 94.
    Kikinis R, Shenton ME, Jolesz FA, et al. (1992) Routine quantitative MRI-based analysis of brain and fluid spaces. J Magn Reson Imaging 2: 619–629PubMedCrossRefGoogle Scholar
  95. 95.
    Amatur SC, Piraina D, Takefuji Y, et al. (1992) Optimization neural networks for the segmentation of magnetic resonance images. IEEE Trans Med Imaging 11: 215–220CrossRefGoogle Scholar
  96. 96.
    Ozakan M, Dawant BM, Macinunas RJ (1993) Neural-network-based segmentation of multi-model medical images: A comparative and prospective study. IEEE Trans Med Imaging 12: 534–544CrossRefGoogle Scholar
  97. 97.
    Hall LO, Bensaid AM, Clarke RP, et al. (1992) A comparison of neural network and fuzzy clustering techniques in segmeting magnetic resonance images of the brain. IEEE Trans Neural Networks 3: 672–682CrossRefGoogle Scholar
  98. 98.
    Udupa JK (1997) Relative fuzzy connectedness and multiple object definition: Theory, algorithms, and applications in image segmentation. Graph Models Image Processing 58: 246–261CrossRefGoogle Scholar
  99. 99.
    Udupa J, Wei L, Samarasekera S, et al. (1996) Detection and quantification of MS lesions using fuzzy topological principles. SPIE Proc 2710: 81–91CrossRefGoogle Scholar
  100. 100.
    Wolff SD, Balaban RS (1989) Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 10: 135–144PubMedCrossRefGoogle Scholar
  101. 101.
    McGowan JC, Leigh J (1994) Selective saturation in magnetization transfer experiments. Magn Reson Med 32: 517–522PubMedCrossRefGoogle Scholar
  102. 102.
    McGowan JC, Schnall MD, Leigh JS (1994) Magnetization transfer imaging with pulsed off-resonance saturation: Contrast variation with saturation duty cycle. J Magn Reson 4: 79–82CrossRefGoogle Scholar
  103. 103.
    Lexa FJ, Grossman RI, Rosenquist AC (1994) MR of Wallerian degeneraion in the feline visual system: Characterization by magnetization transfer rate with histopathologic correlation. AJNR Am J Neuroradiol 15: 201–212PubMedGoogle Scholar
  104. 104.
    Wong KT, Grossman RI, Boorstein JM, et al. (1995) Magnetization transfer imaging or periventricular hypointense white matter in the elderly. AJNR Am J Neuroradiol 16 : 253–258PubMedGoogle Scholar
  105. 105.
    Boorstein JM, Wong KT, Grossman RI, et al. (1994) Metastatic lesions of the brain: Imaging with magnetization transfer. Radiology 191: 799–803PubMedCrossRefGoogle Scholar
  106. 106.
    Hiehle JFJ, Grossman RI, Ramer KN, et al. (1995) Magnetization transfer effect in MR-detected multiple sclerosis lesions: Comparison with gadolinium enhanced spin-echo images and non-enhanced T1-weigted images. AJNR Am J Neuroradiol 16: 69–77PubMedGoogle Scholar
  107. 107.
    Hiehle JFJ, Lenkinski RE, Grossman RI, et al. (1994) Correlation of spectroscopy and magnetization transfer imaging in the evaluation of demyelinating lesions and normal appearing white matter in multiple sclerosis. Magn Reson Med 32: 285–293PubMedCrossRefGoogle Scholar
  108. 108.
    Grossman RI (1994) Magnetization transfer in multiple sclerosis. Ann Neurol 36 (Suppl): S97–S99PubMedCrossRefGoogle Scholar
  109. 109.
    Grossman RI, Gomori JM, Ramer KN, et al. (1994) Magnetization transfer: Theory and clinical applications in neuroradiology. Radiographics 14: 279–290PubMedCrossRefGoogle Scholar
  110. 110.
    van Buchem MA, McGowan JC, Kolson DL, et al. (1996) Quantitative volumetric magnetization transfer analysis in multiple sclerosis: Estimation of macroscopic and microscopic disease burden. Magn Reson Med 36: 632–636PubMedCrossRefGoogle Scholar
  111. 111.
    van Buchem MA, Udupa JK, McGowan JC, et al. (1997) Global volumetric estimation of disease burden in multiple sclerosis based on magnetization transfer imaging. AJNR Am J Neuroradiol 18: 1287–1290PubMedGoogle Scholar
  112. 112.
    van Buchem MA, Grossman RI, Armstrong C, et al. (1998) Correlation of volumetric magnetization transfer imaging with clinical data in multiple sclerosis. Neurology 50: 1609–1617PubMedCrossRefGoogle Scholar
  113. 113.
    Gass A, Barker GJ, Kidd D, et al. (1994) Correlation of magnetization transfer ratio with clinical disability in multiple sclerosis. Ann Neurol 36: 62–7PubMedCrossRefGoogle Scholar
  114. 114.
    Richert N, Ostuni J, Bash C, et al. (1998) Serial monthly magnetization transfer histogram analysis in multiple sclerosis patients: Correlation with bulk with matter lesion load. In: Proceedings of International Society of Magnetic Resonance in Medicine 2: 1325–1326 (abstract)Google Scholar
  115. 115.
    Silver NC, Hughes E, Birnie K, et al. (1998) Magnetization transfer imaging provides a highly reproducible quantitative measure of brain tissue structural integrity. In: Proceedings of the International Society of Magnetic Resonance in Medicine 3: 2162 (abstract)Google Scholar
  116. 116.
    Wolinsky JS, Narayana PA, Fenstermacher MJ (1990) Proton magnetic resonance spectroscopy in multiple sclerosis. Neurology 40: 1764–1769PubMedCrossRefGoogle Scholar
  117. 117.
    Grossman RI, Lenkinski RE, Ramer KN, et al. (1992) MR proton spectroscopy in multiple sclerosis. AJNR Am J Neuroradiol 13:1535–1543PubMedGoogle Scholar
  118. 118.
    Davie CA, Hawkins CP, Barker GJ, et al. (1994) Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 117: 49–58PubMedCrossRefGoogle Scholar
  119. 119.
    Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci 508: 333–348PubMedCrossRefGoogle Scholar
  120. 120.
    Frahm J, Bruhn H, Gyngell ML, et al. (1989) Localized proton NMR spectroscopy in different regions of the human brain in vivo. Relaxation times and concentration of cerebral metabolites. Magn Reson Med 11:47–63PubMedCrossRefGoogle Scholar
  121. 121.
    Soher BJ, van Zijl PCM, Duyn JH, Barker PB (1996) Quantitative proton MR spectroscopic imaging of the human brain. Magn Reson Med 35: 356–363PubMedCrossRefGoogle Scholar
  122. 122.
    Michaelis T, Merboldt KD, Bruhn H, et al. (1993) Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Neuroradiology 187: 219–227Google Scholar
  123. 123.
    Hetherington HP, Pan JW, Mason GF, et al. (1996) Quantitative 1H spectroscopic imaging of human brain at 4.1 T using image segmentation. Magn Reson Med 36: 21–29PubMedCrossRefGoogle Scholar
  124. 124.
    Pan JW, Hetherington HP, Vaughan JT, et al. (1996) Evaluation of multiple sclerosis by 1H spectroscopic imaging at 4.1 T. Magn Reson Med 36: 72–77PubMedCrossRefGoogle Scholar
  125. 125.
    Simmons M, Frondoza C, Coyle J (1991) Immunocytochemical localization of N-acetyl aspartate with monoclonal antibodies. Neuroscience 45: 37–45PubMedCrossRefGoogle Scholar
  126. 126.
    Arnold DL, Riess GT, Matthewset PM, al. (1994) Use of proton magnetic resonance spectroscopy for monitoring disease progression in multiple sclerosis. Ann Neurol 36: 76–82PubMedCrossRefGoogle Scholar
  127. 127.
    Davies SE, Newcombe J, Williams SR, et al. (1995) High resolution proton NMR spectroscopy of multiple sclerosis lesions. J Neurochem 64: 742–748PubMedCrossRefGoogle Scholar
  128. 128.
    Davie CA, Barker GJ, Webb S, et al. (1995) Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss. Brain 118:1583–1592PubMedCrossRefGoogle Scholar
  129. 129.
    Van Hecke P, Marchai G, Johannik K, et al. (1991) Human brain proton localized NMR spectroscopy in multiple sclerosis. Magn Reson Med 18: 199–206PubMedCrossRefGoogle Scholar
  130. 130.
    Schiepers C, van Hecke P, Vandenberghe R, et al. (1997) Positron emission tomography, magnetic resonance imaging and proton NMR spectroscopy of white matter in multiple sclerosis. Mult Scler 3: 8–17PubMedCrossRefGoogle Scholar
  131. 131.
    DeStefano N, Matthews P, Antel J, et al. (1995) Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol 38: 901–909CrossRefGoogle Scholar
  132. 132.
    Narayanan S, Fu L, Pioro E, et al. (1997) Imaging of axonal damage in multiple sclerosis: Spatial distribution of magnetic resonance imaging lesions. Ann Neurol 41:385–391PubMedCrossRefGoogle Scholar
  133. 133.
    Gonen O, Arias-Mendoza F, Goelman G (1997) 3D localized in vivo 1H spectroscopy of human brain by using a hybrid of 1D-Hadamard with 2D-chemical shift imaging. Magn Reson Med 37: 644–650PubMedCrossRefGoogle Scholar
  134. 134.
    Gonen O, Viswanathan A-K, Babb J, et al. (1998) Total brain N-acetylaspartate concentration in normal, age-grouped females: Quantitation with non-echo proton NMR spectroscopy. Magn Reson Med (in press)Google Scholar
  135. 135.
    Searle SR, Casella G, McCulloch CE (1992) Variance components. John Wiley and Sons, New YorkCrossRefGoogle Scholar
  136. 136.
    Kries R, Ernst T, Ross BD (1993) Absolute concentrations of water and metabolites in the human brain. II. Metabolite concentrations. J Magn Reson 102: 9–19CrossRefGoogle Scholar
  137. 137.
    Tsai G, Coyle JT (1995) N-acetylaspartate in neuropsychiatric disorders. Prog Neurobiol 46: 531–540PubMedCrossRefGoogle Scholar
  138. 138.
    Lim KO, Spielman DM (1997) Estimating NAA in cortical gray matter with applications for measuring changes due to aging. Magn Reson Med 37: 372–377PubMedCrossRefGoogle Scholar
  139. 139.
    Majors A, Xue M, Ng TC, Modic MT, et al. (1992) Short echo time proton spectroscopy of human brain using gradient head coil. Magn Reson Imag 10: 649–654CrossRefGoogle Scholar
  140. 140.
    Michaelis T, Merboldt K-D, Hänicke W, et al. (1991) On the identification of cerebral metabolites in localized 1H NMR spectra of human brain in vivo. NMR Biomed 4:90–98PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • R. I. Grossman
    • 1
  1. 1.Department of RadiologyUniversity of Pennsylvania Medical CenterPhiladelphiaUSA

Personalised recommendations